SMURF1: Difference between revisions
Jump to navigation
Jump to search
m Robot: Automated text replacement (-{{reflist}} +{{reflist|2}}, -<references /> +{{reflist|2}}, -{{WikiDoc Cardiology Network Infobox}} +) |
m Reverted edits by 172.58.4.117 (talk) to last version by JCW-CleanerBot |
||
Line 1: | Line 1: | ||
{{Infobox_gene}} | |||
{{ | '''E3 ubiquitin-protein ligase SMURF1''' is an [[enzyme]] that in humans is encoded by the ''SMURF1'' [[gene]].<ref name="pmid10458166">{{cite journal | vauthors = Zhu H, Kavsak P, Abdollah S, Wrana JL, Thomsen GH | title = A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation | journal = Nature | volume = 400 | issue = 6745 | pages = 687–93 | date = Sep 1999 | pmid = 10458166 | pmc = | doi = 10.1038/23293 }}</ref><ref name="entrez">{{cite web | title = Entrez Gene: SMURF1 SMAD specific E3 ubiquitin protein ligase 1| url = https://www.ncbi.nlm.nih.gov/sites/entrez?Db=gene&Cmd=ShowDetailView&TermToSearch=57154| accessdate = }}</ref> | ||
| | |||
| | |||
| | |||
| | |||
| | |||
}} | |||
== Function == | |||
This gene encodes a [[ubiquitin ligase]] that is specific for receptor-regulated [[SMAD (protein)|SMAD]] proteins in the bone morphogenetic protein ([[bone morphogenetic protein|BMP]]) pathway. A similar protein in ''[[Xenopus]]'' is involved in embryonic pattern formation. Alternative splicing results in multiple transcript variants encoding different isoforms. An additional transcript variant has been identified, but its full length sequence has not been determined.<ref name="entrez" /> | |||
==Interactions== | |||
SMURF1 has been shown to [[Protein-protein interaction|interact]] with: | |||
* [[ARHGEF9]],<ref name = pmid18208356>{{cite journal | vauthors = Yamaguchi K, Ohara O, Ando A, Nagase T | title = Smurf1 directly targets hPEM-2, a GEF for Cdc42, via a novel combination of protein interaction modules in the ubiquitin-proteasome pathway | journal = Biol. Chem. | volume = 389 | issue = 4 | pages = 405–13 | date = Apr 2008 | pmid = 18208356 | doi = 10.1515/BC.2008.036 }}</ref> | |||
* [[PLEKHO1]],<ref name = pmid18641638>{{cite journal | vauthors = Lu K, Yin X, Weng T, Xi S, Li L, Xing G, Cheng X, Yang X, Zhang L, He F | title = Targeting WW domains linker of HECT-type ubiquitin ligase Smurf1 for activation by CKIP-1 | journal = Nat. Cell Biol. | volume = 10 | issue = 8 | pages = 994–1002 | date = Aug 2008 | pmid = 18641638 | doi = 10.1038/ncb1760 }}</ref> and | |||
* [[SMURF2]].<ref name = pmid18927080>{{cite journal | vauthors = Fukunaga E, Inoue Y, Komiya S, Horiguchi K, Goto K, Saitoh M, Miyazawa K, Koinuma D, Hanyu A, Imamura T | title = Smurf2 induces ubiquitin-dependent degradation of Smurf1 to prevent migration of breast cancer cells | journal = J. Biol. Chem. | volume = 283 | issue = 51 | pages = 35660–7 | date = Dec 2008 | pmid = 18927080 | doi = 10.1074/jbc.M710496200 }}</ref> | |||
==References== | ==References== | ||
{{reflist | {{reflist}} | ||
==Further reading== | ==Further reading== | ||
{{refbegin | 2}} | {{refbegin | 2}} | ||
*{{cite journal | vauthors = Wrana JL, Attisano L | title = The Smad pathway | journal = Cytokine Growth Factor Rev. | volume = 11 | issue = 1–2 | pages = 5–13 | year = 2000 | pmid = 10708948 | doi = 10.1016/S1359-6101(99)00024-6 }} | |||
*{{cite journal | vauthors = Andersson B, Wentland MA, Ricafrente JY, Liu W, Gibbs RA | title = A "double adaptor" method for improved shotgun library construction | journal = Anal. Biochem. | volume = 236 | issue = 1 | pages = 107–13 | year = 1996 | pmid = 8619474 | doi = 10.1006/abio.1996.0138 }} | |||
*{{cite journal | *{{cite journal | vauthors = Yu W, Andersson B, Worley KC, Muzny DM, Ding Y, Liu W, Ricafrente JY, Wentland MA, Lennon G, Gibbs RA | title = Large-scale concatenation cDNA sequencing | journal = Genome Res. | volume = 7 | issue = 4 | pages = 353–8 | year = 1997 | pmid = 9110174 | pmc = 139146 | doi = 10.1101/gr.7.4.353 }} | ||
*{{cite journal | *{{cite journal | vauthors = Nagase T, Kikuno R, Nakayama M, Hirosawa M, Ohara O | title = Prediction of the coding sequences of unidentified human genes. XVIII. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro | journal = DNA Res. | volume = 7 | issue = 4 | pages = 273–81 | year = 2001 | pmid = 10997877 | doi = 10.1093/dnares/7.4.271 }} | ||
*{{cite journal | *{{cite journal | vauthors = Ebisawa T, Fukuchi M, Murakami G, Chiba T, Tanaka K, Imamura T, Miyazono K | title = Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation | journal = J. Biol. Chem. | volume = 276 | issue = 16 | pages = 12477–80 | year = 2001 | pmid = 11278251 | doi = 10.1074/jbc.C100008200 }} | ||
*{{cite journal | vauthors = Suzuki C, Murakami G, Fukuchi M, Shimanuki T, Shikauchi Y, Imamura T, Miyazono K | title = Smurf1 regulates the inhibitory activity of Smad7 by targeting Smad7 to the plasma membrane | journal = J. Biol. Chem. | volume = 277 | issue = 42 | pages = 39919–25 | year = 2002 | pmid = 12151385 | doi = 10.1074/jbc.M201901200 }} | |||
*{{cite journal | *{{cite journal | vauthors = Tajima Y, Goto K, Yoshida M, Shinomiya K, Sekimoto T, Yoneda Y, Miyazono K, Imamura T | title = Chromosomal region maintenance 1 (CRM1)-dependent nuclear export of Smad ubiquitin regulatory factor 1 (Smurf1) is essential for negative regulation of transforming growth factor-beta signaling by Smad7 | journal = J. Biol. Chem. | volume = 278 | issue = 12 | pages = 10716–21 | year = 2003 | pmid = 12519765 | doi = 10.1074/jbc.M212663200 }} | ||
*{{cite journal | *{{cite journal | vauthors = Koinuma D, Shinozaki M, Komuro A, Goto K, Saitoh M, Hanyu A, Ebina M, Nukiwa T, Miyazawa K, Imamura T, Miyazono K | title = Arkadia amplifies TGF-beta superfamily signalling through degradation of Smad7 | journal = EMBO J. | volume = 22 | issue = 24 | pages = 6458–70 | year = 2004 | pmid = 14657019 | pmc = 291827 | doi = 10.1093/emboj/cdg632 }} | ||
*{{cite journal | *{{cite journal | vauthors = Wang HR, Zhang Y, Ozdamar B, Ogunjimi AA, Alexandrova E, Thomsen GH, Wrana JL | title = Regulation of cell polarity and protrusion formation by targeting RhoA for degradation | journal = Science | volume = 302 | issue = 5651 | pages = 1775–9 | year = 2003 | pmid = 14657501 | doi = 10.1126/science.1090772 }} | ||
*{{cite journal | *{{cite journal | vauthors = Asano Y, Ihn H, Yamane K, Kubo M, Tamaki K | title = Impaired Smad7-Smurf-mediated negative regulation of TGF-beta signaling in scleroderma fibroblasts | journal = J. Clin. Invest. | volume = 113 | issue = 2 | pages = 253–64 | year = 2004 | pmid = 14722617 | pmc = 310747 | doi = 10.1172/JCI16269 }} | ||
*{{cite journal | vauthors = Jin YH, Jeon EJ, Li QL, Lee YH, Choi JK, Kim WJ, Lee KY, Bae SC | title = Transforming growth factor-beta stimulates p300-dependent RUNX3 acetylation, which inhibits ubiquitination-mediated degradation | journal = J. Biol. Chem. | volume = 279 | issue = 28 | pages = 29409–17 | year = 2004 | pmid = 15138260 | doi = 10.1074/jbc.M313120200 }} | |||
*{{cite journal | *{{cite journal | vauthors = Shearwin-Whyatt LM, Brown DL, Wylie FG, Stow JL, Kumar S | title = N4WBP5A (Ndfip2), a Nedd4-interacting protein, localizes to multivesicular bodies and the Golgi, and has a potential role in protein trafficking | journal = J. Cell Sci. | volume = 117 | issue = Pt 16 | pages = 3679–89 | year = 2005 | pmid = 15252135 | doi = 10.1242/jcs.01212 }} | ||
*{{cite journal | vauthors = Bryan B, Cai Y, Wrighton K, Wu G, Feng XH, Liu M | title = Ubiquitination of RhoA by Smurf1 promotes neurite outgrowth | journal = FEBS Lett. | volume = 579 | issue = 5 | pages = 1015–9 | year = 2005 | pmid = 15710384 | doi = 10.1016/j.febslet.2004.12.074 }} | |||
*{{cite journal | vauthors = Barrios-Rodiles M, Brown KR, Ozdamar B, Bose R, Liu Z, Donovan RS, Shinjo F, Liu Y, Dembowy J, Taylor IW, Luga V, Przulj N, Robinson M, Suzuki H, Hayashizaki Y, Jurisica I, Wrana JL | title = High-throughput mapping of a dynamic signaling network in mammalian cells | journal = Science | volume = 307 | issue = 5715 | pages = 1621–5 | year = 2005 | pmid = 15761153 | doi = 10.1126/science.1105776 }} | |||
*{{cite journal | |||
*{{cite journal | |||
*{{cite journal | |||
*{{cite journal | |||
*{{cite journal | |||
*{{cite journal | |||
}} | |||
{{refend}} | {{refend}} | ||
{{protein-stub}} | {{protein-stub}} | ||
Revision as of 00:18, 23 November 2017
VALUE_ERROR (nil) | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Aliases | |||||||
External IDs | GeneCards: [1] | ||||||
Orthologs | |||||||
Species | Human | Mouse | |||||
Entrez |
|
| |||||
Ensembl |
|
| |||||
UniProt |
|
| |||||
RefSeq (mRNA) |
|
| |||||
RefSeq (protein) |
|
| |||||
Location (UCSC) | n/a | n/a | |||||
PubMed search | n/a | n/a | |||||
Wikidata | |||||||
|
E3 ubiquitin-protein ligase SMURF1 is an enzyme that in humans is encoded by the SMURF1 gene.[1][2]
Function
This gene encodes a ubiquitin ligase that is specific for receptor-regulated SMAD proteins in the bone morphogenetic protein (BMP) pathway. A similar protein in Xenopus is involved in embryonic pattern formation. Alternative splicing results in multiple transcript variants encoding different isoforms. An additional transcript variant has been identified, but its full length sequence has not been determined.[2]
Interactions
SMURF1 has been shown to interact with:
References
- ↑ Zhu H, Kavsak P, Abdollah S, Wrana JL, Thomsen GH (Sep 1999). "A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation". Nature. 400 (6745): 687–93. doi:10.1038/23293. PMID 10458166.
- ↑ 2.0 2.1 "Entrez Gene: SMURF1 SMAD specific E3 ubiquitin protein ligase 1".
- ↑ Yamaguchi K, Ohara O, Ando A, Nagase T (Apr 2008). "Smurf1 directly targets hPEM-2, a GEF for Cdc42, via a novel combination of protein interaction modules in the ubiquitin-proteasome pathway". Biol. Chem. 389 (4): 405–13. doi:10.1515/BC.2008.036. PMID 18208356.
- ↑ Lu K, Yin X, Weng T, Xi S, Li L, Xing G, Cheng X, Yang X, Zhang L, He F (Aug 2008). "Targeting WW domains linker of HECT-type ubiquitin ligase Smurf1 for activation by CKIP-1". Nat. Cell Biol. 10 (8): 994–1002. doi:10.1038/ncb1760. PMID 18641638.
- ↑ Fukunaga E, Inoue Y, Komiya S, Horiguchi K, Goto K, Saitoh M, Miyazawa K, Koinuma D, Hanyu A, Imamura T (Dec 2008). "Smurf2 induces ubiquitin-dependent degradation of Smurf1 to prevent migration of breast cancer cells". J. Biol. Chem. 283 (51): 35660–7. doi:10.1074/jbc.M710496200. PMID 18927080.
Further reading
- Wrana JL, Attisano L (2000). "The Smad pathway". Cytokine Growth Factor Rev. 11 (1–2): 5–13. doi:10.1016/S1359-6101(99)00024-6. PMID 10708948.
- Andersson B, Wentland MA, Ricafrente JY, Liu W, Gibbs RA (1996). "A "double adaptor" method for improved shotgun library construction". Anal. Biochem. 236 (1): 107–13. doi:10.1006/abio.1996.0138. PMID 8619474.
- Yu W, Andersson B, Worley KC, Muzny DM, Ding Y, Liu W, Ricafrente JY, Wentland MA, Lennon G, Gibbs RA (1997). "Large-scale concatenation cDNA sequencing". Genome Res. 7 (4): 353–8. doi:10.1101/gr.7.4.353. PMC 139146. PMID 9110174.
- Nagase T, Kikuno R, Nakayama M, Hirosawa M, Ohara O (2001). "Prediction of the coding sequences of unidentified human genes. XVIII. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro". DNA Res. 7 (4): 273–81. doi:10.1093/dnares/7.4.271. PMID 10997877.
- Ebisawa T, Fukuchi M, Murakami G, Chiba T, Tanaka K, Imamura T, Miyazono K (2001). "Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation". J. Biol. Chem. 276 (16): 12477–80. doi:10.1074/jbc.C100008200. PMID 11278251.
- Suzuki C, Murakami G, Fukuchi M, Shimanuki T, Shikauchi Y, Imamura T, Miyazono K (2002). "Smurf1 regulates the inhibitory activity of Smad7 by targeting Smad7 to the plasma membrane". J. Biol. Chem. 277 (42): 39919–25. doi:10.1074/jbc.M201901200. PMID 12151385.
- Tajima Y, Goto K, Yoshida M, Shinomiya K, Sekimoto T, Yoneda Y, Miyazono K, Imamura T (2003). "Chromosomal region maintenance 1 (CRM1)-dependent nuclear export of Smad ubiquitin regulatory factor 1 (Smurf1) is essential for negative regulation of transforming growth factor-beta signaling by Smad7". J. Biol. Chem. 278 (12): 10716–21. doi:10.1074/jbc.M212663200. PMID 12519765.
- Koinuma D, Shinozaki M, Komuro A, Goto K, Saitoh M, Hanyu A, Ebina M, Nukiwa T, Miyazawa K, Imamura T, Miyazono K (2004). "Arkadia amplifies TGF-beta superfamily signalling through degradation of Smad7". EMBO J. 22 (24): 6458–70. doi:10.1093/emboj/cdg632. PMC 291827. PMID 14657019.
- Wang HR, Zhang Y, Ozdamar B, Ogunjimi AA, Alexandrova E, Thomsen GH, Wrana JL (2003). "Regulation of cell polarity and protrusion formation by targeting RhoA for degradation". Science. 302 (5651): 1775–9. doi:10.1126/science.1090772. PMID 14657501.
- Asano Y, Ihn H, Yamane K, Kubo M, Tamaki K (2004). "Impaired Smad7-Smurf-mediated negative regulation of TGF-beta signaling in scleroderma fibroblasts". J. Clin. Invest. 113 (2): 253–64. doi:10.1172/JCI16269. PMC 310747. PMID 14722617.
- Jin YH, Jeon EJ, Li QL, Lee YH, Choi JK, Kim WJ, Lee KY, Bae SC (2004). "Transforming growth factor-beta stimulates p300-dependent RUNX3 acetylation, which inhibits ubiquitination-mediated degradation". J. Biol. Chem. 279 (28): 29409–17. doi:10.1074/jbc.M313120200. PMID 15138260.
- Shearwin-Whyatt LM, Brown DL, Wylie FG, Stow JL, Kumar S (2005). "N4WBP5A (Ndfip2), a Nedd4-interacting protein, localizes to multivesicular bodies and the Golgi, and has a potential role in protein trafficking". J. Cell Sci. 117 (Pt 16): 3679–89. doi:10.1242/jcs.01212. PMID 15252135.
- Bryan B, Cai Y, Wrighton K, Wu G, Feng XH, Liu M (2005). "Ubiquitination of RhoA by Smurf1 promotes neurite outgrowth". FEBS Lett. 579 (5): 1015–9. doi:10.1016/j.febslet.2004.12.074. PMID 15710384.
- Barrios-Rodiles M, Brown KR, Ozdamar B, Bose R, Liu Z, Donovan RS, Shinjo F, Liu Y, Dembowy J, Taylor IW, Luga V, Przulj N, Robinson M, Suzuki H, Hayashizaki Y, Jurisica I, Wrana JL (2005). "High-throughput mapping of a dynamic signaling network in mammalian cells". Science. 307 (5715): 1621–5. doi:10.1126/science.1105776. PMID 15761153.
This protein-related article is a stub. You can help Wikipedia by expanding it. |