Splenic vein thrombosis pathophysiology: Difference between revisions
Line 24: | Line 24: | ||
<figure-inline><figure-inline><figure-inline><figure-inline>[[File:VTE Pathophysisology Virchow's triad.JPG|639x639px]]</figure-inline></figure-inline></figure-inline></figure-inline> | <figure-inline><figure-inline><figure-inline><figure-inline>[[File:VTE Pathophysisology Virchow's triad.JPG|639x639px]]</figure-inline></figure-inline></figure-inline></figure-inline> | ||
Shown below is a table depicting the elements of Virchow's triad and their modern counterparts. | |||
{| | |||
|- | |||
! style="background:#4479BA; color: #FFFFFF;" align="center" + |Virchow's<ref name="isbn1-4020-6649-X">{{cite book |author=Agutter, Paul S. |title=The Aetiology of Deep Venous Thrombosis: A Critical, Historical and Epistemological Survey |publisher=Springer |location=Berlin |year=2008 |pages=84 |isbn=1-4020-6649-X |oclc= |doi= |accessdate=}}</ref> | |||
! style="background:#4479BA; color: #FFFFFF;" align="center" + |Modern | |||
! style="background:#4479BA; color: #FFFFFF;" align="center" + |Notes | |||
|- | |||
! style="background:#DCDCDC;" align="center" + |Phenomena of interrupted [[blood]]-flow | |||
| style="background:#DCDCDC;" align="center" + |"Stasis" or "[[venous stasis]]"<ref name="pmid15692260">{{cite journal |author=Lowe GD |title=Virchow's triad revisited: abnormal flow |journal=Pathophysiol. Haemost. Thromb. |volume=33 |issue=5-6 |pages=455–7 |year=2003 |pmid=15692260 |doi=10.1159/000083845 |url=http://content.karger.com/produktedb/produkte.asp?doi=10.1159/000083845&typ=pdf}}</ref> | |||
| style="background:#F5F5F5;" + | | |||
* The first category, alterations in normal [[blood]] flow, refers to several situations. | |||
* These include [[turbulence]], [[stasis (medicine)|stasis]], [[mitral stenosis]], and [[varicose veins]]. | |||
* The equivalence of [[Virchow's triad|Virchow's]] version and the modern version has been disputed.<ref name="urlFurther reflections on Virchows triad. - Free Online Library">{{cite web |url=http://www.thefreelibrary.com/Further+reflections+on+Virchow%27s+triad.(Letter+to+the+Editor)-a0128075135 |title=Further reflections on Virchow's triad. - Free Online Library |format= |work= |accessdate=2009-02-10}}</ref> | |||
|- | |||
! style="background:#DCDCDC;" align="center" + |Phenomena associated with irritation of the [[vessel]] and its vicinity | |||
| style="background:#DCDCDC;" align="center" + |"Endothelial injury" or "vessel wall injury" | |||
| style="background:#F5F5F5;" + | | |||
* The second category, injuries and/or [[trauma]] to [[endothelium]] includes damage to the veins arising from [[shear stress]] or [[hypertension]]. | |||
|- | |||
! style="background:#DCDCDC;" align="center" + |Phenomena of [[blood]]-[[coagulation]] | |||
| style="background:#DCDCDC;" align="center" + |"[[Hypercoagulability]]" | |||
| style="background:#F5F5F5;" + | | |||
* The last category, alterations in the constitution of blood,<ref name="pmid15692259">{{cite journal |author=Chung I, Lip GY |title=Virchow's triad revisited: blood constituents |journal=Pathophysiol. Haemost. Thromb. |volume=33 |issue=5-6 |pages=449–54 |year=2003 |pmid=15692259 |doi=10.1159/000083844 |url=http://content.karger.com/produktedb/produkte.asp?doi=10.1159/000083844&typ=pdf}}</ref> has numerous possible [[risk factors]] such as [[hyperviscosity]], deficiency of [[antithrombin]] III, [[nephrotic syndrome]], changes after severe [[Physical trauma|trauma]] or burn, disseminated [[cancer]], late [[pregnancy]], and [[delivery]], race, age, whether the patient is a smoker or [[obesity|obese]]. | |||
* All of these [[risk factors]] lead to [[hypercoagulability]]. | |||
|} | |||
Revision as of 17:27, 9 January 2018
Splenic vein thrombosis Microchapters |
Diagnosis |
---|
Treatment |
Case Studies |
Splenic vein thrombosis pathophysiology On the Web |
American Roentgen Ray Society Images of Splenic vein thrombosis pathophysiology |
Risk calculators and risk factors for Splenic vein thrombosis pathophysiology |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] ; Associate Editor(s)-in-Chief: Vindhya BellamKonda, M.B.B.S [2]
Overview
Splenic vein thrombosis in acute or chronic pancreatitis results from perivenous inflammation caused by the anatomic location of the splenic vein along the entire posterior aspect of the pancreatic tail, where it lies in direct contact with the peripancreatic inflammatory tissue. The exact mechanism of thrombosis is likely multi factorial, including both intrinsic endothelial damage from inflammatory or neoplastic processes and extrinsic damage secondary to venous compression from fibrosis, adjacent pseudo cysts, or edema.
Structure
Pathophysiology
Pathogenesis
- It is thought that vein thrombosis is caused by Virchow's triad which includes:[1]
- Reduced portal blood flow
- Hypercoagulable state
- Vascular endothelial injury
<figure-inline><figure-inline><figure-inline><figure-inline></figure-inline></figure-inline></figure-inline></figure-inline>
Shown below is a table depicting the elements of Virchow's triad and their modern counterparts.
Virchow's[2] | Modern | Notes |
---|---|---|
Phenomena of interrupted blood-flow | "Stasis" or "venous stasis"[3] |
|
Phenomena associated with irritation of the vessel and its vicinity | "Endothelial injury" or "vessel wall injury" |
|
Phenomena of blood-coagulation | "Hypercoagulability" |
|
Splenic vein thrombosis in acute or chronic pancreatitis results from perivenous inflammation caused by the anatomic location of the splenic vein along the entire posterior aspect of the pancreatic tail, where it lies in direct contact with the peripancreatic inflammatory tissue. The exact mechanism of thrombosis is likely multifactorial, including both intrinsic endothelial damage from inflammatory or neoplastic processes and extrinsic damage secondary to venous compression from fibrosis, adjacent pseudo cysts, or edema. Obstruction of the splenic vein may also be caused by enlarged retroperitoneal lymph nodes or by pancreatic or perisplenic nodes that are located near the splenic artery, superior to the splenic vein. These nodes lie adjacent to the pancreas and splenic vein and compress compress the splenic vein when involved in an inflammatory or neoplastic process.
When thrombosis of the splenic vein occurs, collateral vessels develop to shunt blood around the occluded splenic vein. The two most common collateral pathways use the short gastric vessels. In the distal esophagus, portosystemic collaterals connect the short gastric veins into the azygous system. Splenoportal collaterals decompress the short gastric veins through both the coronary vein into the portal vein and via the gastroepiploic arcade into the superior mesenteric vein. In either case, the hypertensive short gastric veins cause increased pressure within the submucosal veins of the gastric fundus, resulting in varices. In contrast to generalized portal hypertension, in splenic vein thrombosis flow in the coronary vein is hepatopetal rather than hepatofugal. At times, an enlarged gastroepiploic vein found at laparotomy may be the only indicator of occult splenic vein thrombosis. Isolated esophageal varices, although uncommon in SVT, can occur in cases in which the coronary vein joins the splenic vein proximal to the obstruction. This anatomic variant has been reported to occur in 17 % of the cases.
Less common collateral pathways may also develop to decompress the splenic vein. The left gastroepiploic vein can collateralize to the left colic and inferior mesenteric veins. Although rare, this development has been reported to result in colonic variceal hemorrhage. Other collateral venous channels may develop via the diaphragmatic and intercostal veins to the inferior vena cava . The splenic vein may also collateralize to the renal vein via the adrenal vein.
References
- ↑ Chawla YK, Bodh V (2015). "Portal vein thrombosis". J Clin Exp Hepatol. 5 (1): 22–40. doi:10.1016/j.jceh.2014.12.008. PMC 4415192. PMID 25941431.
- ↑ Agutter, Paul S. (2008). The Aetiology of Deep Venous Thrombosis: A Critical, Historical and Epistemological Survey. Berlin: Springer. p. 84. ISBN 1-4020-6649-X.
- ↑ Lowe GD (2003). "Virchow's triad revisited: abnormal flow". Pathophysiol. Haemost. Thromb. 33 (5–6): 455–7. doi:10.1159/000083845. PMID 15692260.
- ↑ "Further reflections on Virchow's triad. - Free Online Library". Retrieved 2009-02-10.
- ↑ Chung I, Lip GY (2003). "Virchow's triad revisited: blood constituents". Pathophysiol. Haemost. Thromb. 33 (5–6): 449–54. doi:10.1159/000083844. PMID 15692259.