Dyspepsia pathophysiology: Difference between revisions

Jump to navigation Jump to search
Ajay Gade (talk | contribs)
Ajay Gade (talk | contribs)
No edit summary
Line 4: Line 4:


==Overview==
==Overview==
The symptoms of functional dyspepsia are directly caused by two major pathophysiological abnormalities in abnormal gastric motility and visceral hypersensitivity.These mechanisms occur in patients who have acquired excessive responsiveness to stress as a result of the environment during early life, genetic abnormalities, residual inflammation after gastrointestinal infections, or other causes, with the process modified by factors including psychophysiological abnormalities, abnormal secretion of gastric acid, Helicobacter pylori infection, diet, and lifestyle.
The symptoms of functional dyspepsia are directly caused by two major [[Pathophysiology|pathophysiological]] abnormalities in [[Abnormality (behavior)|abnormal]] [[Gastric motility disorder|gastric motility]] and [[visceral]] [[hypersensitivity]]. These [[Mechanism of action|mechanisms]] occur in patients who have acquired excessive responsiveness to stress as a result of the environment during early life, [[genetic]] abnormalities, [[residual]] [[inflammation]] after [[gastrointestinal]] [[Infection|infections]], or other causes, with the process modified by factors including psychophysiological abnormalities, [[abnormal]] secretion of [[gastric acid]], [[Helicobacter pylori infection]], diet, and lifestyle.


==Pathophysiology==
==Pathophysiology==
Line 10: Line 10:
=== Physiology of Digestion ===
=== Physiology of Digestion ===
* In humans, digestion begins in the [[mouth]] where food is chewed.  
* In humans, digestion begins in the [[mouth]] where food is chewed.  
* [[Salivary amylase]] aids in the chemical breakdown of polysaccharides such as starch into disaccharides such as maltose.  
* [[Salivary amylase]] aids in the chemical breakdown of [[polysaccharides]] such as starch into [[Disaccharide|disaccharides]] such as [[maltose]].  
* The chewed food is pushed down the esophagus to the stomach through peristaltic contraction of these muscles.  
* The chewed food is pushed down the esophagus to the stomach through [[peristaltic]] [[contraction]] of these [[Muscle|muscles]].  
* Food enters the [[stomach]] where it is further broken apart and thoroughly mixed with gastric acid, pepsin, and other digestive enzymes to break down proteins.  
* Food enters the [[stomach]] where it is further broken apart and thoroughly mixed with [[gastric acid]], [[pepsin]], and other digestive enzymes to break down proteins.  
* After consumption of food, digestive "tonic" and peristaltic contractions begin, which helps break down the food and move it through. Gastric emptying is the release of food from the stomach into the [[duodenum]].  
* After consumption of food, digestive "[[tonic]]" and [[Peristalsis|peristaltic]] contractions begin, which helps break down the food and move it through. Gastric emptying is the release of food from the stomach into the [[duodenum]].  
* [[Gastric emptying]] has attracted medical interest as rapid gastric emptying is related to obesity and delayed gastric emptying syndrome is associated with [[diabetes mellitus]], [[aging]], and [[gastroesophageal reflux]].  
* [[Gastric emptying]] has attracted medical interest as rapid gastric emptying is related to [[obesity]] and delayed gastric emptying syndrome is associated with [[diabetes mellitus]], [[aging]], and [[gastroesophageal reflux]].  
* After being processed in the stomach, food is passed to the [[small intestine]]. The majority of digestion and absorption occurs here after the milky chyme enters the duodenum. Here it is further mixed with three different liquids:
* After being processed in the stomach, food is passed to the [[small intestine]]. The majority of [[digestion]] and [[absorption]] occurs here after the milky chyme enters the [[duodenum]]. Here it is further mixed with three different liquids:
** Bile which is produced by the [[liver]] and stored in the [[gallbladder]] emulsifies fats and neutralizes the chyme.
** [[Bile]] which is produced by the [[liver]] and stored in the [[gallbladder]] [[emulsifies]] fats and neutralizes the [[chyme]].
** Pancreatic juice made by the [[pancreas]]. It secrete enzymes such as [[pancreatic amylase]], [[pancreatic lipase]], and [[trypsinogen]].
** [[Pancreatic juice]] made by the [[pancreas]]. It secrete enzymes such as [[pancreatic amylase]], [[pancreatic lipase]], and [[trypsinogen]].
**Intestinal juice secreted by the intestinal glands in the small intestine. It contains enzymes such as enteropeptidase, erepsin, [[trypsin]], chymotrypsin, maltase, lactase, and sucrase.
**Intestinal juice secreted by the [[intestinal]] [[glands]] in the [[small intestine]]. It contains [[enzymes]] such as [[enteropeptidase]], [[erepsin]], [[trypsin]], [[chymotrypsin]], [[maltase]], [[lactase]], and [[sucrase]].


=== Pathophysiology of Functional Dyspepsia ===
=== Pathophysiology of Functional Dyspepsia ===
* The symptoms of functional dyspepsia are directly caused by two major physiological abnormalities   
* The symptoms of functional dyspepsia are directly caused by two major [[physiological]] abnormalities   
** '''Abnormal gastric motility'''   
** '''Abnormal gastric motility'''   
** '''Visceral hypersensitivity'''  
** '''Visceral hypersensitivity'''  
* These mechanisms occur in patients who have acquired excessive responsiveness to stress as a result of the environment during early life, genetic abnormalities, residual inflammation after gastrointestinal infections, or other causes, with the process modified by factors including psychophysiological abnormalities, abnormal secretion of gastric acid, Helicobacter pylori infection, diet, and lifestyle.  
* These mechanisms occur in patients who have acquired excessive responsiveness to [[stress]] as a result of the environment during early life, [[genetic]] [[abnormalities]], [[residual]] [[inflammation]] after [[gastrointestinal]] infections, or other causes, with the process modified by factors including psychophysiological abnormalities, abnormal secretion of [[gastric acid]], [[Helicobacter pylori infection]], diet, and lifestyle.  
* If the basis of this model of FD pathogenesis is excessive responsiveness of gastrointestinal function to stress and external stimuli, psychosomatic approaches to alter stress perception could be important treatment options.<ref>{{cite journal |author=Miwa H |title=Why dyspepsia can occur without organic disease: pathogenesis and management of functional dyspepsia |journal=J Gastroenterol |volume= |issue= |pages= |year=2012 |month=July |pmid=22766746 |doi=10.1007/s00535-012-0625-9 |url=}}</ref>
* If the basis of this model of FD [[pathogenesis]] is excessive responsiveness of [[gastrointestinal]] function to stress and external stimuli, [[psychosomatic]] approaches to alter stress [[perception]] could be important treatment options.<ref>{{cite journal |author=Miwa H |title=Why dyspepsia can occur without organic disease: pathogenesis and management of functional dyspepsia |journal=J Gastroenterol |volume= |issue= |pages= |year=2012 |month=July |pmid=22766746 |doi=10.1007/s00535-012-0625-9 |url=}}</ref>


==References==
==References==

Revision as of 14:48, 5 February 2018

Dyspepsia Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Dyspepsia from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

X Ray

CT

MRI

Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Dyspepsia pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Dyspepsia pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Dyspepsia pathophysiology

CDC on Dyspepsia pathophysiology

Dyspepsia pathophysiology in the news

Blogs on Dyspepsia pathophysiology

Directions to Hospitals Treating Dyspepsia

Risk calculators and risk factors for Dyspepsia pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] Associate Editor(s)-in-Chief: Ajay Gade MD[2]]

Overview

The symptoms of functional dyspepsia are directly caused by two major pathophysiological abnormalities in abnormal gastric motility and visceral hypersensitivity. These mechanisms occur in patients who have acquired excessive responsiveness to stress as a result of the environment during early life, genetic abnormalities, residual inflammation after gastrointestinal infections, or other causes, with the process modified by factors including psychophysiological abnormalities, abnormal secretion of gastric acid, Helicobacter pylori infection, diet, and lifestyle.

Pathophysiology

The pathophysiology of dyspepsia is as follows:[1][2][3][4][5][6][7]

Physiology of Digestion

Pathophysiology of Functional Dyspepsia

References

  1. Talley NJ, Ford AC (2015). "Functional Dyspepsia". N. Engl. J. Med. 373 (19): 1853–63. doi:10.1056/NEJMra1501505. PMID 26535514.
  2. Napthali K, Koloski N, Walker MM, Talley NJ (2016). "Women and functional dyspepsia". Womens Health (Lond). 12 (2): 241–50. doi:10.2217/whe.15.88. PMC 5375052. PMID 26901578.
  3. Talley NJ (2016). "Functional dyspepsia: new insights into pathogenesis and therapy". Korean J. Intern. Med. 31 (3): 444–56. doi:10.3904/kjim.2016.091. PMC 4855108. PMID 27048251.
  4. Ganesh M, Nurko S (2014). "Functional dyspepsia in children". Pediatr Ann. 43 (4): e101–5. doi:10.3928/00904481-20140325-12. PMID 24716560.
  5. Fock KM (2011). "Functional dyspepsia, H. pylori and post infectious FD". J. Gastroenterol. Hepatol. 26 Suppl 3: 39–41. doi:10.1111/j.1440-1746.2011.06649.x. PMID 21443707.
  6. Oustamanolakis P, Tack J (2012). "Dyspepsia: organic versus functional". J. Clin. Gastroenterol. 46 (3): 175–90. doi:10.1097/MCG.0b013e318241b335. PMID 22327302.
  7. Kindt S, Dubois D, Van Oudenhove L, Caenepeel P, Arts J, Bisschops R, Tack J (2009). "Relationship between symptom pattern, assessed by the PAGI-SYM questionnaire, and gastric sensorimotor dysfunction in functional dyspepsia". Neurogastroenterol. Motil. 21 (11): 1183–e105. doi:10.1111/j.1365-2982.2009.01374.x. PMID 19663903.
  8. Miwa H (2012). "Why dyspepsia can occur without organic disease: pathogenesis and management of functional dyspepsia". J Gastroenterol. doi:10.1007/s00535-012-0625-9. PMID 22766746. Unknown parameter |month= ignored (help)

Template:WS Template:WH