Lung cancer CT: Difference between revisions

Jump to navigation Jump to search
Dildar Hussain (talk | contribs)
No edit summary
Dildar Hussain (talk | contribs)
No edit summary
Line 33: Line 33:


== Spiral CT perfusion imaging ==
== Spiral CT perfusion imaging ==
*Spiral CT perfusion imaging is analyzed for:
*Spiral CT perfusion study can be used as a diagnostic method for peripheral pulmonary nodules.
*Spiral CT perfusion study provides non-invasive method of quantitative assessment about the blood flow patterns of peripheral pulmonary nodules. 
*Spiral CT perfusion imaging is analyzed and evaluated for:.<ref name="MaLe2008">{{cite journal|last1=Ma|first1=Shu-Hua|last2=Le|first2=Hong-Bo|last3=Jia|first3=Bao-hui|last4=Wang|first4=Zhao-Xin|last5=Xiao|first5=Zhuang-Wei|last6=Cheng|first6=Xiao-Ling|last7=Mei|first7=Wei|last8=Wu|first8=Min|last9=Hu|first9=Zhi-Guo|last10=Li|first10=Yu-Guang|title=Peripheral pulmonary nodules: Relationship between multi-slice spiral CT perfusion imaging and tumor angiogenesis and VEGF expression|journal=BMC Cancer|volume=8|issue=1|year=2008|issn=1471-2407|doi=10.1186/1471-2407-8-186}}</ref>]]
**TDC (time density curve)
**TDC (time density curve)
**Perfusion parametric maps
**Perfusion parametric maps
**The respective perfusion parameters.  
**The respective perfusion parameters.  
*Immunohistochemical findings of MVD (microvessel density) measurement and VEGF expression was evaluated.
**Immunohistochemical findings of microvessel density (MVD) measurement  
It provided not only a non-invasive method of quantitative assessment for blood flow patterns of peripheral pulmonary nodules but also an applicable diagnostic method for peripheral pulmonary nodules.
**VEGF expression
{| class="wikitable"
{| class="wikitable"
|[[Image:Peripheral pulmonary nodules1.jpg|thumb|300px|(A-H) Poorly differentiated adenocarcinoma found in the apicoposterior segment of superior lobe of the left lung of a 56 year-old male. (A) Time density curve. (B-F) (original image, BF, BV, MTT, PS) typeI parametric maps, PS value is higher (30.883). (G) CD34 staining shows many immature tumor microvessels (× 200). (H) VEGF expression is strong positive (× 400) via, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2474637/figure/F6/.<ref name="MaLe2008">{{cite journal|last1=Ma|first1=Shu-Hua|last2=Le|first2=Hong-Bo|last3=Jia|first3=Bao-hui|last4=Wang|first4=Zhao-Xin|last5=Xiao|first5=Zhuang-Wei|last6=Cheng|first6=Xiao-Ling|last7=Mei|first7=Wei|last8=Wu|first8=Min|last9=Hu|first9=Zhi-Guo|last10=Li|first10=Yu-Guang|title=Peripheral pulmonary nodules: Relationship between multi-slice spiral CT perfusion imaging and tumor angiogenesis and VEGF expression|journal=BMC Cancer|volume=8|issue=1|year=2008|issn=1471-2407|doi=10.1186/1471-2407-8-186}}</ref>]]
|[[Image:Peripheral pulmonary nodules1.jpg|thumb|300px|(A-H) Poorly differentiated adenocarcinoma found in the apicoposterior segment of superior lobe of the left lung of a 56 year-old male. (A) Time density curve. (B-F) (original image, BF, BV, MTT, PS) typeI parametric maps, PS value is higher (30.883). (G) CD34 staining shows many immature tumor microvessels (× 200). (H) VEGF expression is strong positive (× 400) via, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2474637/figure/F6/.<ref name="MaLe2008">{{cite journal|last1=Ma|first1=Shu-Hua|last2=Le|first2=Hong-Bo|last3=Jia|first3=Bao-hui|last4=Wang|first4=Zhao-Xin|last5=Xiao|first5=Zhuang-Wei|last6=Cheng|first6=Xiao-Ling|last7=Mei|first7=Wei|last8=Wu|first8=Min|last9=Hu|first9=Zhi-Guo|last10=Li|first10=Yu-Guang|title=Peripheral pulmonary nodules: Relationship between multi-slice spiral CT perfusion imaging and tumor angiogenesis and VEGF expression|journal=BMC Cancer|volume=8|issue=1|year=2008|issn=1471-2407|doi=10.1186/1471-2407-8-186}}</ref>]]

Revision as of 00:19, 17 February 2018

Lung cancer Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Lung cancer from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic study of choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X-ray

Echocardiography and Ultrasound

CT scan

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Lung cancer CT On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Lung cancer CT

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Lung cancer CT

CDC on Lung cancer CT

Lung cancer CT in the news

Blogs on Lung cancer CT

Directions to Hospitals Treating Lung cancer

Risk calculators and risk factors for Lung cancer CT

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] Associate Editor(s)-in-Chief: Dildar Hussain, MBBS [2]

Overview

Chest CT scan may be helpful in the diagnosis of lung cancer. Findings on CT scan suggestive of lung cancer include, a solitary pulmonary nodule, centrally located masses, mediastinal invasion

CT scans help stage the lung cancer. A CT scan of the abdomen and brain can help visualize the common sights of metastases: adrenal glands, liver, and brain. CT scans diagnose lung cancer by providing anatomical detail to locate the tumor, demonstrating proximity to nearby structures, and deciphering whether lymph nodes are enlarged in the mediastinum.

CT Scan

Common radiological appearances of lung cancer. Centrally located mass with mediastinal invasion (arrow, A), peripherally situated mass abutting the pleura (arrow, B), mass with smooth, lobulated margins (arrow, C) and with spiculated, irregular margins (arrow, D), via <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4419420/figure/F1/>[1]
Lung cancers with atypical radiological pattern. Squamous cell cancer presenting as a cavitating mass (arrow, A). Adenocarcinoma presenting as dense consolidation (arrow, B). Bronchoalveolar carcinoma (adenocarcinoma in situ) presenting as ground-glass opacity (arrow, C) and mixed density, solid (arrow), and ground-glass nodules (arrowhead) in D via <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4419420/figure/F2/>[1]
Stage T1 and T2 tumors. Stage T1 tumor due to size <3 cm (arrow, A). Stage T2 endobronchial tumor (arrowhead) causing pneumonitis restricted to the upper lobe (arrow) in B. T2a tumor >3 cm but <5 cm (arrow, C). T2b tumor >5 cm but <7 cm (arrow in D) via <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4419420/figure/F3/>[1]
Stage T3 tumors. T3 tumor due to size >7 cm in size (arrow, A), eroding the ribs (arrow, B), infiltrating the mediastinal pleura but not the vessels (arrow, C), and causing atelectasis of the entire lung (arrowhead, D via<https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4419420/figure/F4/>.[1]
Stage T4 tumors. T4 tumor due to invasion of pulmonary artery (arrow, A), descending aorta (arrow, B), vertebral body (arrow, C), superior vena cava with thrombus (arrow, D)via<https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4419420/figure/F5/>[1]
Superior sulcus tumor. Axial (A) and coronal (B) CT scans show a large mass in the apex of the right lung causing destruction of the first and second ribs (arrows) with erosion of the right half of the vertebral body (arrowheads) suggestive of a superior sulcus tumor, via<https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4419420/figure/F16/>[1]

Spiral CT perfusion imaging

  • Spiral CT perfusion study can be used as a diagnostic method for peripheral pulmonary nodules.
  • Spiral CT perfusion study provides non-invasive method of quantitative assessment about the blood flow patterns of peripheral pulmonary nodules.
  • Spiral CT perfusion imaging is analyzed and evaluated for:.[2]]]
    • TDC (time density curve)
    • Perfusion parametric maps
    • The respective perfusion parameters.
    • Immunohistochemical findings of microvessel density (MVD) measurement
    • VEGF expression
(A-H) Poorly differentiated adenocarcinoma found in the apicoposterior segment of superior lobe of the left lung of a 56 year-old male. (A) Time density curve. (B-F) (original image, BF, BV, MTT, PS) typeI parametric maps, PS value is higher (30.883). (G) CD34 staining shows many immature tumor microvessels (× 200). (H) VEGF expression is strong positive (× 400) via, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2474637/figure/F6/.[2]
(A-H) (A-H) Well differentiated squamous cell carcinoma found in the posterior basal segment of inferior lobe of the right lung of a 61-year-old male. (A) Time density curve. (B-F) (original image, BF, BV, MTT, PS) TypeII parametric maps, PS value is higher (27.051). (G) CD34 staining shows many immature tumor microvessels (× 200). (H) VEGF expression is strong positive (× 400). via, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2474637/figure/F3/.[2]

CT Findings of Metastatic disease

  • CT scans help stage the lung cancer. A CT scan of the abdomen and brain can help visualize the common sights of metastases: adrenal glands, liver, and brain.
  • The benefits of CT Scans in lung cancer patients are the following:[3]
    • Provides anatomical detail to locate the tumor
    • Demonstrates proximity to nearby structures
    • Deciphers whether lymph nodes are enlarged in the mediastinum
Metastatic disease. Bilateral pleural effusions-M1a (arrow, A), lung metastases-M1a (arrows, B), adrenal metastasis-M1b (arrow, C), vertebral metastasis-M1b (arrow, D), brain metastasis-M1b (arrow, E), liver metastases-M1b (arrows, F)via<https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4419420/figure/F10/>This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.[1]
Adrenal adenoma versus metastasis. Enhancing solid adrenal nodule on CT scan in a case of lung cancer (arrow, A) suggestive of metastatic deposit. Unenhanced CT scan shows fatty attenuation within the nodule with an HU value of 0 suggesting the possibility of an adenoma (arrow, B). FDG PET/CT shows no tracer concentration in the nodule, confirming the diagnosis of adenoma. Enhancing solid adrenal nodule on CT scan in another patient of lung cancer (arrow, D), which is indeterminate in nature. FDG PET/CT shows abnormal focal tracer concentration in the nodule (arrow, E) highly suggestive of a metastatic deposit via<https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4419420/figure/F11/>[1]
Brain metastases in asymptomatic patient, CT scan versus MRI. MRI brain in a patient of lung cancer shows multiple tiny enhancing foci scattered in the parenchyma bilaterally (arrows in A and B) suggestive of metastatic lesions. Corresponding contrast CT scan sections of the brain show no obvious lesions (C and D). Note the beam hardening effects due to bone, leading to a loss of resolution on the CT images (C and D)via<https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4419420/figure/F12/>[1]
  • Unfortunately, research has shown that there are a number of false positives associated with CT scanning because a CT scan on its own cannot determine malignancy.
  • A positive result for a tumor using a CT scan is typically followed up with a biopsy for confirmation.

References

  1. 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 Purandare, NilenduC; Rangarajan, Venkatesh (2015). "Imaging of lung cancer: Implications on staging and management". Indian Journal of Radiology and Imaging. 25 (2): 109. doi:10.4103/0971-3026.155831. ISSN 0971-3026.
  2. 2.0 2.1 2.2 Ma, Shu-Hua; Le, Hong-Bo; Jia, Bao-hui; Wang, Zhao-Xin; Xiao, Zhuang-Wei; Cheng, Xiao-Ling; Mei, Wei; Wu, Min; Hu, Zhi-Guo; Li, Yu-Guang (2008). "Peripheral pulmonary nodules: Relationship between multi-slice spiral CT perfusion imaging and tumor angiogenesis and VEGF expression". BMC Cancer. 8 (1). doi:10.1186/1471-2407-8-186. ISSN 1471-2407.
  3. Gerard A. Silvestri, Lynn T. Tanoue, Mitchell L. Margolis, John Barker, Frank Detterbeck.11/30/11.The Noninvasive Staging of Non Small-cell Lung Cancer. Chestpubs. http://chestjournal.chestpubs.org/content/123/1_suppl/147S.full/

Template:Tumors


Template:WikiDoc Sources