Lead poisoning medical therapy: Difference between revisions
Line 12: | Line 12: | ||
==Medical Therapy== | ==Medical Therapy== | ||
Additionally, a comparative study of chelating agents showed that [[vitamin C]] ([[ascorbic acid]]), along with DMSA, CDTA and DMPS increased survival in an animal model of lead intoxication, while EDTA, N-acetyl-L-cysteine (NAC) and various other agents did not.<ref>{{cite journal | author=Llobet JM, Domingo JL, Paternain JL, Corbella J | title=Treatment of acute lead intoxication. A quantitative comparison of a number of chelating agents | journal=Arch Environ Contam Toxicol | year=1990 | pages=185–9 |volume=19 | issue=2 | pmid=2322019 | doi=10.1007/BF01056085}}</ref> High serum levels of vitamin C have been associated with a decreased prevalence of elevated blood lead levels<ref>{{cite journal | author=Simon JA, Hudes ES | title=Relationship of ascorbic acid to blood lead levels | journal=JAMA | year=1999 | pages=2289–93 | volume=281 | issue=24 | pmid=10386552 |doi=10.1001/jama.281.24.2289}}</ref> and intervention with supplemental vitamin C was shown to markedly decrease lead levels in smokers (mean: 81 %). Authors hypothesize, however, that this effect might be due to an inhibition of lead absorption.<ref>{{cite journal |author=Dawson E, Evans D, Harris W, Teter M, McGanity W |title=The effect of ascorbic acid supplementation on the blood lead levels of smokers |journal=J Am Coll Nutr |volume=18 |issue=2 |pages=166–70 |year=1999 |pmid=10204833}}</ref> | Additionally, a comparative study of chelating agents showed that [[vitamin C]] ([[ascorbic acid]]), along with [[DMSA]], [[CDTA]] and [[DMPS]] increased survival in an animal model of [[lead intoxication]], while [[EDTA]], [[N-acetyl-L-cysteine]] ([[NAC]]) and various other agents did not.<ref>{{cite journal | author=Llobet JM, Domingo JL, Paternain JL, Corbella J | title=Treatment of acute lead intoxication. A quantitative comparison of a number of [[chelating agents]] | journal=Arch Environ Contam Toxicol | year=1990 | pages=185–9 |volume=19 | issue=2 | pmid=2322019 | doi=10.1007/BF01056085}}</ref> High serum levels of [[vitamin C]] have been associated with a decreased prevalence of elevated blood lead levels<ref>{{cite journal | author=Simon JA, Hudes ES | title=Relationship of ascorbic acid to blood lead levels | journal=JAMA | year=1999 | pages=2289–93 | volume=281 | issue=24 | pmid=10386552 |doi=10.1001/jama.281.24.2289}}</ref> and intervention with supplemental [[vitamin C]] was shown to markedly decrease [[lead levels]] in smokers (mean: 81 %). Authors hypothesize, however, that this effect might be due to an inhibition of lead absorption.<ref>{{cite journal |author=Dawson E, Evans D, Harris W, Teter M, McGanity W |title=The effect of [[ascorbic acid]] supplementation on the blood lead levels of smokers |journal=J Am Coll Nutr |volume=18 |issue=2 |pages=166–70 |year=1999 |pmid=10204833}}</ref> | ||
===Disease Name=== | ===Disease Name=== |
Revision as of 18:45, 22 June 2018
Lead poisoning Microchapters |
Diagnosis |
---|
Treatment |
Case Studies |
Lead poisoning medical therapy On the Web |
American Roentgen Ray Society Images of Lead poisoning medical therapy |
Risk calculators and risk factors for Lead poisoning medical therapy |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Aksiniya Stevasarova, M.D.
Overview
The mainstay of treatment for lead poisoning is chelation therapy.
Although the most important part of treating lead poisoning is decreasing exposure to lead, pharmacologic medical therapy with chelating agents to decrease the existing BLL (blood lead levels) include:
Medical Therapy
Additionally, a comparative study of chelating agents showed that vitamin C (ascorbic acid), along with DMSA, CDTA and DMPS increased survival in an animal model of lead intoxication, while EDTA, N-acetyl-L-cysteine (NAC) and various other agents did not.[1] High serum levels of vitamin C have been associated with a decreased prevalence of elevated blood lead levels[2] and intervention with supplemental vitamin C was shown to markedly decrease lead levels in smokers (mean: 81 %). Authors hypothesize, however, that this effect might be due to an inhibition of lead absorption.[3]
Disease Name
- 1 Stage 1 - Name of stage
- 1.1 Specific Organ system involved 1
- 1.1.1 Adult
- Preferred regimen (1): drug name 100 mg PO q12h for 10-21 days (Contraindications/specific instructions)
- Preferred regimen (2): drug name 500 mg PO q8h for 14-21 days
- Preferred regimen (3): drug name 500 mg q12h for 14-21 days
- Alternative regimen (1): drug name 500 mg PO q6h for 7–10 days
- Alternative regimen (2): drug name 500 mg PO q12h for 14–21 days
- Alternative regimen (3): drug name 500 mg PO q6h for 14–21 days
- 1.1.2 Pediatric
- 1.1.2.1 (Specific population e.g. children < 8 years of age)
- Preferred regimen (1): drug name 50 mg/kg PO per day q8h (maximum, 500 mg per dose)
- Preferred regimen (2): drug name 30 mg/kg PO per day in 2 divided doses (maximum, 500 mg per dose)
- Alternative regimen (1): drug name10 mg/kg PO q6h (maximum, 500 mg per day)
- Alternative regimen (2): drug name 7.5 mg/kg PO q12h (maximum, 500 mg per dose)
- Alternative regimen (3): drug name 12.5 mg/kg PO q6h (maximum, 500 mg per dose)
- 1.1.2.2 (Specific population e.g. 'children < 8 years of age')
- Preferred regimen (1): drug name 4 mg/kg/day PO q12h(maximum, 100 mg per dose)
- Alternative regimen (1): drug name 10 mg/kg PO q6h (maximum, 500 mg per day)
- Alternative regimen (2): drug name 7.5 mg/kg PO q12h (maximum, 500 mg per dose)
- Alternative regimen (3): drug name 12.5 mg/kg PO q6h (maximum, 500 mg per dose)
- 1.1.2.1 (Specific population e.g. children < 8 years of age)
- 1.1.1 Adult
- 1.2 Specific Organ system involved 2
- 1.1 Specific Organ system involved 1
- 2 Stage 2 - Name of stage
- 2.1 Specific Organ system involved 1
- Note (1):
- Note (2):
- Note (3):
- 2.1.1 Adult
- Parenteral regimen
- Oral regimen
- Preferred regimen (1): drug name 500 mg PO q8h for 14 (14–21) days
- Preferred regimen (2): drug name 100 mg PO q12h for 14 (14–21) days
- Preferred regimen (3): drug name 500 mg PO q12h for 14 (14–21) days
- Alternative regimen (1): drug name 500 mg PO q6h for 7–10 days
- Alternative regimen (2): drug name 500 mg PO q12h for 14–21 days
- Alternative regimen (3):drug name 500 mg PO q6h for 14–21 days
- 2.1.2 Pediatric
- Parenteral regimen
- Preferred regimen (1): drug name 50–75 mg/kg IV q24h for 14 (14–21) days (maximum, 2 g)
- Alternative regimen (1): drug name 150–200 mg/kg/day IV q6–8h for 14 (14–21) days (maximum, 6 g per day)
- Alternative regimen (2): drug name 200,000–400,000 U/kg/day IV q4h for 14 (14–21) days (maximum, 18–24 million U per day) '(Contraindications/specific instructions)'
- Oral regimen
- Preferred regimen (1): drug name 50 mg/kg/day PO q8h for 14 (14–21) days (maximum, 500 mg per dose)
- Preferred regimen (2): drug name (for children aged ≥ 8 years) 4 mg/kg/day PO q12h for 14 (14–21) days (maximum, 100 mg per dose)
- Preferred regimen (3): drug name 30 mg/kg/day PO q12h for 14 (14–21) days (maximum, 500 mg per dose)
- Alternative regimen (1): drug name 10 mg/kg PO q6h 7–10 days (maximum, 500 mg per day)
- Alternative regimen (2): drug name 7.5 mg/kg PO q12h for 14–21 days (maximum, 500 mg per dose)
- Alternative regimen (3): drug name 12.5 mg/kg PO q6h for 14–21 days (maximum,500 mg per dose)
- Parenteral regimen
- 2.2 'Other Organ system involved 2'
- Note (1):
- Note (2):
- Note (3):
- 2.2.1 Adult
- Parenteral regimen
- Oral regimen
- Preferred regimen (1): drug name 500 mg PO q8h for 14 (14–21) days
- Preferred regimen (2): drug name 100 mg PO q12h for 14 (14–21) days
- Preferred regimen (3): drug name 500 mg PO q12h for 14 (14–21) days
- Alternative regimen (1): drug name 500 mg PO q6h for 7–10 days
- Alternative regimen (2): drug name 500 mg PO q12h for 14–21 days
- Alternative regimen (3):drug name 500 mg PO q6h for 14–21 days
- 2.2.2 Pediatric
- Parenteral regimen
- Preferred regimen (1): drug name 50–75 mg/kg IV q24h for 14 (14–21) days (maximum, 2 g)
- Alternative regimen (1): drug name 150–200 mg/kg/day IV q6–8h for 14 (14–21) days (maximum, 6 g per day)
- Alternative regimen (2): drug name 200,000–400,000 U/kg/day IV q4h for 14 (14–21) days (maximum, 18–24 million U per day)
- Oral regimen
- Preferred regimen (1): drug name 50 mg/kg/day PO q8h for 14 (14–21) days (maximum, 500 mg per dose)
- Preferred regimen (2): drug name 4 mg/kg/day PO q12h for 14 (14–21) days (maximum, 100 mg per dose)
- Preferred regimen (3): drug name 30 mg/kg/day PO q12h for 14 (14–21) days (maximum, 500 mg per dose)
- Alternative regimen (1): drug name 10 mg/kg PO q6h 7–10 days (maximum, 500 mg per day)
- Alternative regimen (2): drug name 7.5 mg/kg PO q12h for 14–21 days (maximum, 500 mg per dose)
- Alternative regimen (3): drug name 12.5 mg/kg PO q6h for 14–21 days (maximum,500 mg per dose)
- Parenteral regimen
- 2.1 Specific Organ system involved 1
References
- ↑ Llobet JM, Domingo JL, Paternain JL, Corbella J (1990). "Treatment of acute lead intoxication. A quantitative comparison of a number of chelating agents". Arch Environ Contam Toxicol. 19 (2): 185&ndash, 9. doi:10.1007/BF01056085. PMID 2322019.
- ↑ Simon JA, Hudes ES (1999). "Relationship of ascorbic acid to blood lead levels". JAMA. 281 (24): 2289&ndash, 93. doi:10.1001/jama.281.24.2289. PMID 10386552.
- ↑ Dawson E, Evans D, Harris W, Teter M, McGanity W (1999). "The effect of ascorbic acid supplementation on the blood lead levels of smokers". J Am Coll Nutr. 18 (2): 166&ndash, 70. PMID 10204833.