Rapidly progressive glomerulonephritis pathophysiology: Difference between revisions

Jump to navigation Jump to search
Jogeet singh sekhon (talk | contribs)
No edit summary
Jogeet singh sekhon (talk | contribs)
No edit summary
Line 53: Line 53:
* These immune complexes are deposited over the GBM.
* These immune complexes are deposited over the GBM.
* The immune complexes activate the complement system which sets off the inflammatory process.
* The immune complexes activate the complement system which sets off the inflammatory process.
* The complement cascade is activated, attracting inflammatory cells and mediators to the GBM.
* The complement cascade is activated, attracting [[Inflammation|inflammatory]] cells and mediators to the GBM.
* The serum levels of c3 and c4 fall down and is an indicator of immune complex mediated glomerular injury.  
* The serum levels of c3 and c4 fall down and is an indicator of immune complex mediated glomerular injury.  



Revision as of 14:06, 20 July 2018

Rapidly progressive glomerulonephritis Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Rapidly progressive glomerulonephritis from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X-ray Findings

CT-scan Findings

MRI

Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Rapidly progressive glomerulonephritis pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Rapidly progressive glomerulonephritis pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Rapidly progressive glomerulonephritis pathophysiology

CDC on Rapidly progressive glomerulonephritis pathophysiology

Rapidly progressive glomerulonephritis pathophysiology in the news

Blogs on Rapidly progressive glomerulonephritis pathophysiology

Directions to Hospitals Treating Rapidly progressive glomerulonephritis

Risk calculators and risk factors for Rapidly progressive glomerulonephritis pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Overview

Pathophysiology

Anatomy

Renal corpuscle. (Source: [Michal Komorniczak (Poland)[CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0)], from Wikimedia Commons])
Alveolar wall ([By Cruithne9 [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)], from Wikimedia Commons])


The key for the renal corpuscle figure is: A – Renal corpuscle, B – Proximal tubule, C – Distal convoluted tubule, D – Juxtaglomerular apparatus, 1. Basement membrane (Basal lamina), 2. Bowman's capsule – parietal layer, 3. Bowman's capsule – visceral layer, 3a. Pedicels (Foot processes from podocytes), 3b. Podocyte, 4. Bowman's space (urinary space), 5a. Mesangium – Intraglomerular cell, 5b. Mesangium – Extraglomerular cell, 6. Granular cells (Juxtaglomerular cells), 7. Macula densa, 8. Myocytes (smooth muscle), 9. Afferent arteriole, 10. Glomerulus Capillaries, 11. Efferent arteriole.

Rapidly progressive glomerulonephritis is a disease of the kidney in which the renal function deteriorates very quickly in a matter of days.

Atleast 50% reduction in GFR occurs in RPGN in a few days to weeks.

RPGN occurs from severe and fast damage to the GBM which results in crescent formation,the main pathological finding in RPGN.

Pathogenesis

  • RPGN is characterized by severe and fast damage to the GBM that results in atleast 50% reduction in GFR in a few days.
  • The injury to GBM can be caused by multiple factors.
  • Crescent formation is the major pathological finding.
  • In some cases crescents might be absent.
Cresent formation
  • Crescents are defined as 2 or more layers of proliferating cells in the Bowman's space.
  • It is a response that occurs following severe damage to the glomerulus.
  • Crescents are formed when fibrin deposition occurs in Bowmans 'space.
  • Fibrin formation in Bowman's space is a complex process which involves multiple components.
  • Fibrin formation is precipitated by leakage of multiple cells and inflammation mediators through glomerular capliiary wall,GBM and Bowman's capsule.
  • This leakage occurs from damage caused by multiple factors:
    • Anti GBM antiboides
    • Immune complexes
    • ANCA or vasculitis
  • The cells include coagulation proteins,macrophages,T cells and other inflammatory mediators.
  • This leads to fibrous tissue formation in the Bowman's space known as crescents.
Glomerular injury
  • Injury to the glomerulus is the initiating factor for crescent formation.
  • Injury can occur by the following
    1. Anti GBM antibodies-Type I RPGN
          • These are autoantibodies that cross react with type IV collagen of the GBM.
          • These can be produced due to genetic causes such as in Goodpasture diseases or they can be produced after viral URTI or cigarette smoking.
          • These autoantibodies react with the GBM resulting in IgG deposition over the GBM.
          • The IgG activates helper T cells that attract the inflammatory mediators to the GBM damaging the glomeruli.
          • This damage causes leakage of cells and inflammatory mediators resulting in crescent formation.
          • The anti GBM antibodies can affect the lungs as well as in Goodpasture syndrome resulting in glomerular necrosis and alveolar haemorrhages.

2. Immune complex- Type II RPGN

  • Immune complexes are formed in certain infections, connective tissue diseases, side effects of some drugs and in some myeloproliferative disorders.
  • These immune complexes are deposited over the GBM.
  • The immune complexes activate the complement system which sets off the inflammatory process.
  • The complement cascade is activated, attracting inflammatory cells and mediators to the GBM.
  • The serum levels of c3 and c4 fall down and is an indicator of immune complex mediated glomerular injury.
  • This damages the glomeruli and causes leakage of cells and inflammatory mediators resulting in crescent formation.

3. Pauci immune RPGN-Type III RPGN

  • No circulating immune complexes or antibodies.
  • Glomerular damage is caused by circulating ANCAs(anti nuclear cytoplasmic antibodies) .
  • ANCAs cause glomerular damage by releasing lytic enzymes from white blood cells such as neutrophils.
  • These lytic enzymes damage the GBM and cause leakage of circulating cells that result in fibrin formation in the Bowmans space.
  • ANCAs are associated with systemic vasculitis.

Microscopic pathology

{{#ev:youtube|CqSyj4cVZPE}}

References

Template:WH Template:WS