Combined immunodeficiency: Difference between revisions

Jump to navigation Jump to search
Anum Gull (talk | contribs)
Anum Gull (talk | contribs)
Line 448: Line 448:
* Management of jobs syndrome is focused on skin care and [[antimicrobil]] prophylaxis.
* Management of jobs syndrome is focused on skin care and [[antimicrobil]] prophylaxis.


== Comel Netherton Syndrome ==
== Comel Netherton syndrome ==
* Comel Netherton Syndrome is caused by [[mutations]] in the serine protease inhibitor of Kazal type 5 gene (SPINK5)on [[chromosome]] 5q32.
* Comel Netherton syndrome is caused by [[mutations]] in the serine protease inhibitor of Kazal type 5 [[gene]] (SPINK5)on [[chromosome]] 5q32.
* Comel Netherton Syndrome is inherited as an [[autosomal recessive]] pattern.
* Comel Netherton syndrome is inherited as an [[autosomal recessive]] pattern.
* SPINK5 [[gene]] encodes a multidomain serine protein kinase known as lymphoepithelial Kazal type inhibitor (LEKTI) expressed in [[epithelial]] and [[mucosal surfaces]].<ref name="pmid10835624">{{cite journal |vauthors=Chavanas S, Bodemer C, Rochat A, Hamel-Teillac D, Ali M, Irvine AD, Bonafé JL, Wilkinson J, Taïeb A, Barrandon Y, Harper JI, de Prost Y, Hovnanian A |title=Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton syndrome |journal=Nat. Genet. |volume=25 |issue=2 |pages=141–2 |date=June 2000 |pmid=10835624 |doi=10.1038/75977 |url=}}</ref>
* SPINK5 [[gene]] encodes a multidomain serine protein kinase known as lymphoepithelial Kazal type inhibitor (LEKTI) expressed in [[epithelial]] and [[mucosal]] surfaces.<ref name="pmid10835624">{{cite journal |vauthors=Chavanas S, Bodemer C, Rochat A, Hamel-Teillac D, Ali M, Irvine AD, Bonafé JL, Wilkinson J, Taïeb A, Barrandon Y, Harper JI, de Prost Y, Hovnanian A |title=Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton syndrome |journal=Nat. Genet. |volume=25 |issue=2 |pages=141–2 |date=June 2000 |pmid=10835624 |doi=10.1038/75977 |url=}}</ref>
* Lymphoepithelial Kazal type inhibitor directly inhibits kallikreins, especially kallikrein 5 (KLK5).
* Lymphoepithelial Kazal type inhibitor directly inhibits [[kallikreins]], especially kallikrein 5 (KLK5).
* Kallikreins are critical epidermal proteases and essential for regulating skin desquamation.
* Kallikreins are critical [[epidermal]] [[proteases]] and essential for regulating [[skin]] [[desquamation]].
* Comel Netherton Syndrome is clinically characterized by a triad which include followings:<ref name="pmid13582191">{{cite journal |vauthors=NETHERTON EW |title=A unique case of trichorrhexis nodosa; bamboo hairs |journal=AMA Arch Derm |volume=78 |issue=4 |pages=483–7 |date=October 1958 |pmid=13582191 |doi= |url=}}</ref>
* Comel Netherton syndrome is clinically characterized by a triad which include followings:<ref name="pmid13582191">{{cite journal |vauthors=NETHERTON EW |title=A unique case of trichorrhexis nodosa; bamboo hairs |journal=AMA Arch Derm |volume=78 |issue=4 |pages=483–7 |date=October 1958 |pmid=13582191 |doi= |url=}}</ref>
**Congenital ichthyosiform erythroderma
**[[Congenital]] [[ichthyosiform erythroderma]]
**Astrichorrhexis invaginata ("bamboo hair")
**[[Astrichorrhexis invaginata]] ("bamboo hair")
**Atopic diathesis.
**[[Atopic]] [[diathesis]].
* Comel Netherton Syndrome patients exhibit absent LEKTI staining in the epidermis.
* [[Comel Netherton syndrome]] patients exhibit absent LEKTI staining in the [[epidermis]].
* Genetic testing will identify a germline SPINK5 mutation and confirm the diagnosis in approximately 66 to 75 percent of cases.<ref name="pmid19487419">{{cite journal |vauthors=Minegishi Y, Saito M, Nagasawa M, Takada H, Hara T, Tsuchiya S, Agematsu K, Yamada M, Kawamura N, Ariga T, Tsuge I, Karasuyama H |title=Molecular explanation for the contradiction between systemic Th17 defect and localized bacterial infection in hyper-IgE syndrome |journal=J. Exp. Med. |volume=206 |issue=6 |pages=1291–301 |date=June 2009 |pmid=19487419 |pmc=2715068 |doi=10.1084/jem.20082767 |url=}}</ref>
* [[Genetic testing]] will identify a [[germline]] SPINK5 [[mutation]] and confirm the diagnosis in approximately 66 to 75 percent of cases.<ref name="pmid19487419">{{cite journal |vauthors=Minegishi Y, Saito M, Nagasawa M, Takada H, Hara T, Tsuchiya S, Agematsu K, Yamada M, Kawamura N, Ariga T, Tsuge I, Karasuyama H |title=Molecular explanation for the contradiction between systemic Th17 defect and localized bacterial infection in hyper-IgE syndrome |journal=J. Exp. Med. |volume=206 |issue=6 |pages=1291–301 |date=June 2009 |pmid=19487419 |pmc=2715068 |doi=10.1084/jem.20082767 |url=}}</ref>
* There is no specific therapy for NS.  
* There is no specific therapy for NS.  
* It is mainly supportive.
* It is mainly supportive.

Revision as of 15:51, 14 December 2018


Immunodeficiency Main Page

Home

Overview

Classification

Immunodeficiency Affecting Cellular and Humoral Immunity

Combined Immunodeficiency

Predominantly Antibody Deficiency

Diseases of Immune Dysregulation

Congenital Defects of Phagocytes

Defects in Intrinsic and Innate Immunity

Auto-inflammatory Disorders

Complement Deficiencies

Phenocopies of Primary Immunodeficiency

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Ali Akram, M.B.B.S.[2], Anum Gull M.B.B.S.[3]

Overview

Classification

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Combined Immunodeficiency Diseases with associated or syndromic features
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Congenital thromocytopenia
 
 
DNA Repair Defects
 
 
Immuno-osseous dysplasias
 
 
Thymic Defects with additional congenital anomalies
 
 
Hyper-IgE syndromes(HIES)
 
 
Dyskeratosis congenita (DKC)
 
 
Defects of Vitamin B12 and Folate metabolism
 
 
Anhidrotic Ectodermodysplasia with ID
 
 
Others
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Wiskott Aldrich Syndrome
 
 
 
Ataxia telangiectasia
 
 
 
Cartilage Hair Hypoplasia
 
 
 
DiDeorge Syndrome
 
 
 
Job Syndrome
 
 
 
Dyskeratosis congenita
 
 
 
Transcobalmin 2 deficiency
 
 
 
NEMO deficiency
 
 
 
Purine nucleoside phosphorylase deficiency
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
XL thrombocytopenia
 
 
 
Nijmegen breakage Syndrome
 
 
 
Schimke Syndrome
 
 
 
TBX1 deficiency
 
 
 
Comel Netherton Syndrome
 
 
 
COATS plus syndrome
 
 
 
Deficiency causing hereditary folate malabsorption
 
 
 
EDA-ID due to IKBA GOF mutation
 
 
 
ID with multiple intestinal atresias
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
WIP deficiency
 
 
 
Bloom syndrome
 
 
 
MYSM1 deficiency
 
 
 
Chromosome 10p13-p14 deletion Syndrome
 
 
 
PGM3 deficiency
 
 
 
SAMD9
 
 
 
Methylene-tetrahydrofolate-dehydrogenase 1 deficiency
 
 
 
 
 
 
 
 
Hepatic veno-occlusive disease with immunodeficiency
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ARPC1B deficiency
 
 
 
PMS2 deficiency
 
 
 
MOPD1 deficiency
 
 
 
CHARGE Syndrome
 
 
 
 
 
 
 
 
SAMD9L
 
 
 
 
 
 
 
 
 
 
 
 
 
Vici Syndrome
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Immunodeficiency with centromeric instability and facial anomalies(ICF1, ICF2, ICF3, ICF4)
 
 
 
EXTL3 deficiency
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
HOIL1 deficiency, HOIP1 deficiency
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
MCM4 deficiency
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Calcium Channel Defects(ORAI-1 deficiency, STIM1 deficiency)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
RNF168 deficiency
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Hennekam-lymphangiectasia-lymphedema syndrome
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
POLE1 deficiency
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
STAT5b deficiency
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
POLE2 deficiency
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Kabuki Syndrome
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NSMCE3 deficiency
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ERCC6L2(Hebo deficiency)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ligase 1 deficiency
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
GINS1 deficiency
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Wiskott-Aldrich Syndrome

X-linked thrombocytopenia (XLT)

  • X-Liked thrombocytopenia is a less severe variant of wiskot aldrich syndrome.
  • X-Liked thrombocytopenia presents as a benign disease with good long-term survival compared with classic WAS.[5][6][7]
  • There is a relationship between XLT and WAS as both are caused by mutations of the same gene.[8]
  • WAS gene is mutated in X linked thrombocytopenia .[8]
  • X linked thrombocytopenia is inherited as a X- linked-recessive pattern.
  • X linked thrombocytopenia is characterized by:
    • Mild-to-moderate eczema
    • Mild infrequent infections
    • Small-sized platelets
  • Treatment for patients with XLT is still not determined.[5]

WIP Deficiency

  • WIPF1 gene which is located on chromosome 2q31.1
  • Mutation of WIPF1 gene leads to WIP deficiency.

ARPC1B Deficiency

Ataxia-telangietectasia

Nijmegen breakage Syndrome

Bloom Syndrome

  • Bloom syndrome is also called as Bloom-Torre-Machacek syndrome or congenital telangiectatic erythema.
  • Bloom syndrome is caused by the mutation in the BLM gene which is located on chromosome 15q26.
  • BLM gene encodes DNA helicase RecQ protein-like-3 (RECQL3).[28][29]
  • Bloom Syndrome is inherited as an autosomal recessive inherited disorder.
  • Most common manifestations of Bloom syndrome include followings:[30][28]
  • Bloom syndrome is diagnosed by detecting mutations in BLM gene.[31]
  • There is no specific treatment for bloom syndrome.

PMS2 Deficiency

  • PMS2 also known as Post-Meiotic Segregation 2.

Immunodeficiency with Centromeric instability and Facial anomalies(ICF1, ICF2, ICF3, ICF4)

  • ICF2 is caused by mutation in the ZBTB24 gene on chromosome 6q21.[35]
  • ICF3 is caused by mutation in the CDCA7 gene on chromosome 2q31.
  • ICF4 is caused by mutation in the HELLS gene on chromosome 10q23.

MCM4 Deficiency

RNF168 Deficiency

POLE1 deficiency

POLE2 deficiency

NSMCE3 Deficiency

ERCC6L2(Hebo deficiency)

  • ERCC6L2 gene is located on 9q22.32.
  • ERCC6L2 gene belongs to a family of helicases.
  • ERCC6L2 gene is involved in chromatin unwinding,transcription regulation and DNA recombination and repair.[56]
  • Mutation of ERCC6L2 gene leads to bone marrow failure syndrome 2.[56]
  • Bone marrow failure syndrome 2 is inherited as an autosomal recessive pattern.
  • Bone marrow failure syndrome 2 is characterized by followings:

Ligase 1 Deficiency

  • LIG1 gene is located on 19q13.33
  • DNA ligase is encoded by LIG1 gene.
  • DNA ligase functions at the replication fork to join okazaki fragments during replication of lagging strand DNA.[57]
  • Mutation of LIIG1 gene leads reclassified-variant of unknown significance formerly called as DNA ligase 1 deficiency.
  • Ligase 1 deficiency is characterized by immunodeficiency and cellular hypersensitivity to DNA-damaging agents.[58]

GINS1 deficiency

Cartilage hair hypoplasia

  • Cartilage hair hypoplasia is also known as metaphyseal chondroplasia.
  • Cartilage hair hypoplasia is caused by mutation in the RMRP gene.
  • RMRP gene is located on chromosome 9p13.
  • RMRP gene encodes mitochondrial RNA-processing endoribonuclease.[60]
  • The endoribonucleaseis involved in:
    • Cleavage of RNA in mitochondrial DNA synthesis
    • Nucleolar cleaving of pre-rRNA.[60]
  • Cartilage hair hypoplasia is inherited as an autosomal recessive pattern.
  • Cartilage hair hypoplasia is characterized by followings:
  • Clinical diagnosis is made by observing fine and sometimes sparse hair in an individual with short stature and disproportionally short limbs.[62]
  • Suspected cases of skeletal dysplasia may be evaluated on radiography.
  • X- ray findings shows metaphyseal ends are abnormal and appear as scalloped, irregular surfaces that may contain cystic areas.[63]
  • Definitive diagnosis is made by genetic analysis of the RMRP gene.

Schimke Syndrome

  • Schimke immuno-osseous dysplasia (SIOD) is a rare autosomal recessive disorder.
  • SIODis caused by homozygous or compound heterozygous mutation in the SMARCAL1 gene on chromosome 2q25.[64]
  • Mutations in SMARCAL1 gene which encodes matrix-associated, actin-dependent regulator of chromatin, subfamily a-like 1).[64].[65]
  • Characterized by short stature (often with prenatal growth deficiency), spondyloepiphyseal dysplasia, defective cellular immunity, and progressive renal failure.
  • The diagnosis should be considered in patients with short stature and immunodeficiency.
  • Renal function should be assessed if the diagnosis is suspected.
  • Radiographs for the characteristic bony anomalies should be performed.
  • Markedly improved marrow function afterbone marrow transplantation.[66][66]

MYSM1 deficiency

  • MYSM1 gene is located on 1p32.1
  • MYSM1 gene encodes a deubiquitinase which is involved in regulation of trancription and mediates histone deubiquitination[67]
  • MYSM1 deficiency leads to bone marrow failure syndrome 4.
  • MYSM1 deficiency is inherited as an autosomal recessive pattern.[68][69]
  • MYSM1 deficiency is associated with
    • Developmental aberrations
    • Progressive bone marrow failure with myelodysplastic features
    • Increased susceptibility to genotoxic stress.
  • Hematopoietic stem cell transplant is a curative therapy.

MOPD1 deficiency

EXTL3 deficiency

Digeorge Syndrome

TBX1 deficiency

Chromosome 10p13-p14 deletion Syndrome

CHARGE Syndrome

Job Syndrome

Comel Netherton syndrome

PGM3 deficiency

  • PGM 3 stands for PHOSPHOGLUCOMUTASE 3
  • PGM3 gene is located on chromosome 6q14.
  • Mutation of PGM3 gene leads to immunodeficiency-23 (IMD23)[81]
  • PGM3 deficiency is also known as IMMUNODEFICIENCY-VASCULITIS-MYOCLONUS SYNDROME.
  • PGM3 deficiency is inherited as an autosomal recessive.
  • PGM3 deficiency is characterized by recurrent respiratory and skin infections beginning in early childhood.[81]
  • Affected individuals with PGM3 deficiency show developmental delay or cognitive impairment of varying severity.
  • Laboratory studies of PGM3 deficiency includes followings :
    • Increased serum IgE.
    • Eczema
    • Recurrent respiratory tract infections[82]

Dyskeratosis congenita

  • Dyskeratosis congenita is caused by mutation in DKC1 gene on chromosome Xq28[83]
  • Dyskeratosis congenita is inherited as an X-linked recessive disorder.
  • Mutations in DKC1 genes that maintain telomere length in rapidly dividing cells lead to premature cell death and senescence.[84]
  • Dyskeratosis congenita is characterized as a triad and include followings:[85]
    • Abnormal skin pigmentation
    • Nail dystrophy
    • Leukoplakia of the oral mucosa

COATS plus syndrome

  • COATS plus syndrome is also known as cerebroretinal microangiopathy with calcifications and cysts-1.
  • COATS plus syndrome is caused by compound heterozygous mutation in the CTC1 gene on chromosome 17p13.
  • COATS plus syndrome is inherited as an autosomal recessive pattern.
  • COATS plus syndrome is characterized by followings:[86]
    • Retinal telangiectasias with exudates
    • Intracranial calcifications
    • Cerebellar movement disorder
    • Osteopenia
    • Leukoencephalopathy
    • Poor growth
    • Bone marrow failure

SAMD9

  • SAMD9 gene stands for STERILE ALPHA MOTIF DOMAIN-CONTAINING PROTEIN 9.
  • SAMD9 gene located on 7q21.2
  • SAMD9 gene is encodes a protein which is localized in cytoplasm and involved in regulating cell proliferation and apoptosis.
  • Mutation of SAMD9 gene leads to mirage syndrome.
  • MIRAGE syndrome is inherited as an autosomal dominant pattern.
  • MIRAGE syndrome is form of syndromic adrenal hypoplasia characterized by followings:[87]
    • Myelodysplasia
    • Infection
    • Restriction of growth
    • Adrenal hypoplasia
    • Genital phenotypes
    • Enteropathy
  • MIRAGE syndrome is often fatal within the first decade of life as a result of invasive infection.
  • If the mutation is SAMD9 gene is inherited as an autosomal recessive pattern it leads to familial tumoral calcinosis
  • Familial tumoral calcinosis is characterized by followings:[88]
    • Massive periarticular and visceral deposition of calcified tumors

SAMD9L

Transcobalmin 2 deficiency

  • Transcobalmin 2 deficiency is caused by mutation in TCN2 gene.
  • TCN2 gene is located on chromosome 22q12.2
  • The TCN2 gene encodes transcobalamin II which is a plasma globulin that acts as the primary transport protein for vitamin B12.
  • Transcobalmin 2 is also called as VITAMIN B12-BINDING PROTEIN 2.
  • TC II as well as intrinsic factor is required for transport of cobalamin from the intestine to the blood.
  • Transcobalmin 2 deficiency is inherited as an autosomal recessive pattern.
  • Transcobalmin 2 deficiency is characterized by followings:[90]
    • Failure to thrive
    • Megaloblastic anemia
    • Pancytopenia
    • Methylmalonic aciduria
    • Recurrent infections
  • Definitive treatment is the supplementation of cobalamin.
  • Complication of transcobalmin deficiency includes mental retardation and neurologic abnormalities.

Deficiency causing hereditary folate malabsorption

  • Hereditary folate malabsorption is caused by mutation in the SLC46A1 gene.
  • SLC46A1 gene is located on chromosome 17q11.
  • Hereditary folate malabsorption is an autosomal recessive disorder.
  • Hereditary folate malabsorption leads to impaired intestinal folate absorption and impaired transport of folate into the central nervous system.
  • Hereditary folate malabsorption presents in infancy and characterized by signs and symptoms of folate deficiency.
  • Hereditary folate malabsorption presents with followings:[91]
    • Low blood and cerebrospinal fluid folate levels
    • Megaloblastic anemia
    • Diarrhea
    • Immunodeficiency
    • Infections
    • Neurologic deficits
  • Definitive treatment is folate supplementation.

Methylene-tetrahydrofolate-dehydrogenase 1 deficiency

  • The MTHFD1 gene encodes a trifunctional protein comprising 5,10-methylenetetrahydrofolate dehydrogenase , 5,10-methenyltetrahydrofolate cyclohydrolase , and 10-formyltetrahydrofolate synthetase.
  • These 3 sequential reactions are involved in the interconversion of 1-carbon derivatives of tetrahydrofolate (THF) which are substrates for methionine, thymidylate, and de novo purine syntheses.
  • Mutation in the MTHFD1 gene leads to combined immunodeficiency and megaloblastic anemia with or without hyperhomocysteinemia.[92]
  • The deficiency is inherited as an autosomal recessive disorder.[93]
  • The deficiency is characterized by followings:
    • Hemolytic uremic syndrome
    • Macrocytosis
    • Epilepsy
    • Hearing loss
    • Retinopathy
    • Mild mental retardation
    • Lymphopenia
    • Low T-cell receptor excision circles.
  • Folinic acid and hydroxycobalamin supplementation is an effective treatment.

NEMO deficiency

  • NEMO stands for NF-kappa-B essential modifier.
  • NEMO], MIM is encoded by a IKBKG gene on the X chromosome
  • NEMO also known as IKBKG gene (inhibitor of kappa polypeptide gene enhancer kinase gamma).[94]
  • IKBKG belongs to a family of NEMO-like kinases that function in numerous cell signaling pathways.
  • NEMO-like kinases specifically phosphorylate serine or threonine residues that are followed by a proline residue.
  • Ectodermal dysplasia and immune deficiency-1 (EDAID1) is caused by mutation in the IKK-gamma gene (IKBKG or NEMO )on Xq28.
  • NEMO deficiency is inherited as an X-linked recessive disorder.
  • NEMO deficiency is characterized by ectodermal dysplasia with immunodefciency.[95]

EDA-ID due to IKBA GOF mutation

  • Mutations in the NFKBIA gene result in functional impairment of NFKB ), a master transcription factor required for normal activation of immune responses.
  • Interruption of NFKB signaling results in decreased production of proinflammatory cytokines and certain interferons, rendering patients susceptible to infection.
  • Ectodermal dysplasia and immune deficiency-2 (EDAID2) is caused by heterozygous mutation in the NFKBIA gene on chromosome 14q13.
  • It is inherited as an /autosomal dominant pattern
  • EDAID2 is characterized by variable features of ectodermal dysplasia (e.g., hypo/anhidrosis, sparse hair, tooth anomalies) and various immunologic and infectious phenotypes of differing severity.

Purine nucleoside phosphorylase deficiency

  • Purine nucleoside phosphorylase deficiency is caused by mutation in the PNP gene.
  • Purine nucleoside phosphorylase is one of the enzymes of purine salvage pathway.
  • Defects in purine nucleoside phosphorylase enzyme lead to intracellular accumulation of metabolites that incldes deoxyguanosine triphosphate (dGTP).
  • Deoxyguanosine triphosphate is particularly toxic to T cells.[96]
  • Purine nucleoside phosphorylase deficiency is autosomal recessive disorder.
  • Purine nucleoside phosphorylase deficiency is characterized mainly by decreased T-cell function.
  • Patients typically present in infancy to early childhood with frequent bacterial, viral, and opportunistic infections.[97]
  • Purine nucleoside phosphorylase deficiency also presents with progressive neurologic symptoms which includes ataxia, developmental delay and spasticity
  • Low serum uric acid associated with T cell deficiency is highly suggestive of PNP deficiency.
  • Diagnosis of purine nucleoside phosphorylase deficiency is confirmed by measurement of PNP enzyme activity.
  • The only curative procedure for PNP deficiency is a hematopoietic stem cell transplantation.

ID with multiple intestinal atresias

  • Also known as familial intestinal polyaterisa syndrome.
  • Mutation in the TTC7A gene leads to gastrointestinal defects and immunodeficiency syndrome.
  • TTC7A gene is located on chromosome 2p21.
  • TT7CA stands for tetratricopeptide repeat domain 7A.
  • TTC7A protein involves in proper development andfunction of both thymic and GI epithelium.[98]
  • Gastrointestinal defects and immunodeficiency syndrome is inherited as an autosomal recessive inheritance.
  • Gastrointestinal defects and immunodeficiency syndrome is characterized by followings
    • Multiple intestinal atresia, in which atresia throughout intestines.[99]
    • Combined immunodeficiency
  • Surgical outcomes are poor, and the condition is usually fatal within the first month of life.

Hepatic veno-occlusive disease with immunodeficiency

  • Hepatic venoocclusive disease with immunodeficiency is caused by mutation in the SP110 gene.
  • SP110 gene is located on chromosome 2q37.
  • SP10 gene encodes a protein called SP110 nuclear body protein which is involved in immuni reguation.
  • Hepatic venoocclusive disease with immunodeficiency is an autosomal recessive disorder.
  • Hepatic venoocclusive disease is associated with hepatic vascular occlusion and fibrosis.
  • The immunodeficiency in hepatic venoocclusive disease is characterized by followings:[100]
    • Severe hypogammaglobulinemia
    • Combined T and B cell immunodeficiency
    • Absent lymph node germinal centers
    • Absent plasma cells
  • Hepatic veno-occlusive disease should be treat with intravenous immunoglobulin and pneumocystis jerovici prophylaxis.

Vici Syndrome

  • Vici syndrome is caused by mutation in the EPG5 gene.
  • EPG5 gene is located on chromosome 18q.
  • EPG5 encodes a gene called EPG5 which stands for ectopic P-granules autophagy protein 5.
  • Ectopic P-granules autophagy protein 5 a key regulator in autophagy and forms autolysosomesrome.[101]
  • Vici syndrome is inherited as an autosomal recessive pattern.[102]
  • Vici syndrome is characterized by followings:[103]
    • Agenesis of the corpus callosum
    • Cataracts
    • Pigmentary defects
    • Progressive cardiomyopathy
    • Variable immunodeficiency
    • Profound psychomotor retardation
    • Hypotonia due to a myopathy

HOIL1 deficiency

  • HOIL1 stands for heme -oxidized IRP2 ubiquitin ligase 1.
  • HOIL1 also RBCK1 gene.
  • RBCK1 gene encodes 1 of the components of the linear ubiquitin chain assembly complex(LUBAC)
  • RBCK1 gene is located on chromosome 20p13
  • Mutation in the RBCK1 leads to polyglucosan body myopathy.
  • Polyglucosan body myopathy is inherited as autosomal recessive disorder.[104]
  • Polyglucosan body myopathy-1 is characterized by progressive proximal muscle weakness in early childhood.[105]
  • Most patients with polyglucosan body myopathy-1 also develop progressive dilated cardiomyopathy.
  • Some patients with polyglucosan body myopathy also presents with severe immunodeficiency.

HOIP1 deficiency

  • HOIP stands for Hoil 1-Interacting Protein.
  • HOIP1 deficiency is caused by the mutation in RNF31 gene.
  • RNF31 gene is located chromosome 14q11.2.
  • HOIP deficincy is characterized by followings:[105]
    • Multiorgan autoinflammation
    • Combined immunodeficiency
    • Subclinical amylopectinosis
    • Systemic lymphangiectasia

Calcium Channel Defects (ORAI-1 deficiency)

  • ORAI1 is also known as calcium release-activated calcium modulator1 (CRAMC1).
  • ORAI1 gene is located on chromosome 12q24.
  • ORAI1 (CRAMC1) gene encodes a plasma membrane protein essential for pore-forming subunit of the Ca2+ release-activated calcium channels.
  • Mutation in the ORAI1 gene leads to primary immunodeficiency-9.[106]
  • Primary immunodeficiency-9 in inherited as an autosomal recessive disorder.
  • Common manifestations of calcium channel defects include followings:
    • Recurrent infections due to defective T-cell activation
    • Congenital myopathy
    • Muscle weakness
    • Ectodermal dysplasia including soft dental enamel
  • If the mutation in the ORAI1 gene is inherited as an autosomal dominant pattern it leads to tubular aggregate myopathy-2.[107]
  • Tubular aggregate myopathy-2 is characterized by muscle pain, cramping, or weakness that begins in childhood and worsens over time.[108]
  • Tubular aggregate myopathy-2 involves build up of proteins abnormally in both type I and type II muscle fibers and forms clumps of tube-like structures called tubular aggregates

STIM1 deficiency

  • STM1 stands for stromal interaction molecule 1.
  • STIM1 gene is located on chromosome 11p15.
  • STIM1 gene encode stromal interaction molecule 1
  • Stromal interaction molecule1 senses release of Ca2+ from endoplasmic reticulum and activates CRAC channels in the plasma membrane.
  • Mutation in the STIM1 gene leads to primary immunodeficiency-10.[109]
  • Immunodeficiency-10 is iherited as an autosomal recessive disorder.[110]
  • Immunodeficiency-10 is characterized by recurrent infections in childhood due to defective T- and NK-cell function.
  • Immunodeficiency-10 also have followigs:
    • Hypotonia
    • Hypohidrosis
    • Dental enamel hypoplasia consistent with amelogenesis imperfecta

Hennekam-lymphangiectasia-lymphedema syndrome 2

  • Hennekam lymphangiectasia-lymphedema syndrome-2 is caused by mutation in the FAT4 gene on chromosome 4q28.
  • Hennekam lymphangiectasia-lymphedema syndrome-2 is inherited as an autosomal recessive pattern.[111]
  • FAT4 gene encodes a protein which is a member of a large family of protocadherins.
  • Hennekam-lymphangiectasia-lymphedema syndrome 2 is characterized by followigs:
    • Generalized lymphatic dysplasia
    • Facial dysmorphism
    • Cognitive impairment.[111]

STAT5b deficiency

  • STAT5b deficiency also known as signal transducer and activator of transcription 5B.[112]
  • STAT5 proteins are components of the common growth hormone and interleukin-2 families of cytokines signaling pathway.
  • STAT family members are phosphorylated by the receptor associated kinases in response to cytokines and growth factors.
  • STAT proteins then form homo-or heterodimers that translocate to the cell nucleus where they act as transcription activators.[113]
  • Growth hormone insensitivity is caused by a mutation in the STAT5B gene which is required for normal signaling of the GH receptor.[114]
  • Growth hormone insensitivity includes the followings:
    • Severe growth failure
    • Elevated serum concentrations of GH
    • Clinical phenotype that identical to congenital GH deficiency.[115]

Kabuki Syndrome

  • Kabuki syndrome-1 (KABUK1) is caused by heterozygous mutation in the MLL2 gene (KMT2D).
  • Histone methyltransferase is a protein that encoded by MLL2 gene (KMT2D) which methylates the Lys-4 position of histone H3.
  • It usually inherits as an autosomal dominant pattern.
  • Common manifestations of Kabuki syndrome include:[116][117][118]
    • Congenital mental retardation syndrome
    • Postnatal dwarfism
    • long palpebral fissures with eversion of the lateral third of the lower eyelids (reminiscent of the make-up of actors of Kabuki, a Japanese traditional theatrical form)
    • Broad and depressed nasal tip
    • Large prominent earlobes
    • Cleft or high-arched palate
    • Scoliosis
    • Short fifth finger
    • Persistence of fingerpads
    • Radiographic abnormalities of the vertebrae, hands, and hip joints
    • Recurrent otitis media in infancy

References

  1. Sullivan KE, Mullen CA, Blaese RM, Winkelstein JA (December 1994). "A multiinstitutional survey of the Wiskott-Aldrich syndrome". J. Pediatr. 125 (6 Pt 1): 876–85. PMID 7996359.
  2. Buchbinder D, Nugent DJ, Fillipovich AH (2014). "Wiskott-Aldrich syndrome: diagnosis, current management, and emerging treatments". Appl Clin Genet. 7: 55–66. doi:10.2147/TACG.S58444. PMC 4012343. PMID 24817816.
  3. Buchbinder D, Nugent DJ, Fillipovich AH (2014). "Wiskott-Aldrich syndrome: diagnosis, current management, and emerging treatments". Appl Clin Genet. 7: 55–66. doi:10.2147/TACG.S58444. PMC 4012343. PMID 24817816.
  4. Muñoz A, Olivé T, Martinez A, Bureo E, Maldonado MS, Diaz de Heredia C, Sastre A, Gonzalez-Vicent M (September 2007). "Allogeneic hemopoietic stem cell transplantation (HSCT) for Wiskott-Aldrich syndrome: a report of the Spanish Working Party for Blood and Marrow Transplantation in Children (GETMON)". Pediatr Hematol Oncol. 24 (6): 393–402. doi:10.1080/08880010701454404. PMID 17710656.
  5. 5.0 5.1 Albert MH, Bittner TC, Nonoyama S, Notarangelo LD, Burns S, Imai K, Espanol T, Fasth A, Pellier I, Strauss G, Morio T, Gathmann B, Noordzij JG, Fillat C, Hoenig M, Nathrath M, Meindl A, Pagel P, Wintergerst U, Fischer A, Thrasher AJ, Belohradsky BH, Ochs HD (April 2010). "X-linked thrombocytopenia (XLT) due to WAS mutations: clinical characteristics, long-term outcome, and treatment options". Blood. 115 (16): 3231–8. doi:10.1182/blood-2009-09-239087. PMID 20173115.
  6. Medina SS, Siqueira LH, Colella MP, Yamaguti-Hayakawa GG, Duarte B, Dos Santos Vilela MM, Ozelo MC (June 2017). "Intermittent low platelet counts hampering diagnosis of X-linked thrombocytopenia in children: report of two unrelated cases and a novel mutation in the gene coding for the Wiskott-Aldrich syndrome protein". BMC Pediatr. 17 (1): 151. doi:10.1186/s12887-017-0897-6. PMC 5480256. PMID 28641574. Vancouver style error: initials (help)
  7. Wada T, Itoh M, Maeba H, Toma T, Niida Y, Saikawa Y, Yachie A (April 2014). "Intermittent X-linked thrombocytopenia with a novel WAS gene mutation". Pediatr Blood Cancer. 61 (4): 746–8. doi:10.1002/pbc.24787. PMID 24115682.
  8. 8.0 8.1 Villa A, Notarangelo L, Macchi P, Mantuano E, Cavagni G, Brugnoni D, Strina D, Patrosso MC, Ramenghi U, Sacco MG (April 1995). "X-linked thrombocytopenia and Wiskott-Aldrich syndrome are allelic diseases with mutations in the WASP gene". Nat. Genet. 9 (4): 414–7. doi:10.1038/ng0495-414. PMID 7795648.
  9. Caputo O, Grosa G, Balliano G, Rocco F, Biglino G (1988). "In vitro metabolism of 2-(5-ethylpyridin-2-yl)benzimidazole". Eur J Drug Metab Pharmacokinet. 13 (1): 47–51. doi:10.1007/BF03189928. PMID 3260865.
  10. Pawłowski R (1991). "Distribution of common phenotypes of sperm diaphorase (DIA3) in the Polish population". Hum. Hered. 41 (4): 279–80. doi:10.1159/000154013. PMID 1783416.
  11. Al-Mousa H, Hawwari A, Al-Ghonaium A, Al-Saud B, Al-Dhekri H, Al-Muhsen S, Elshorbagi S, Dasouki M, El-Baik L, Alseraihy A, Ayas M, Arnaout R (March 2017). "Hematopoietic stem cell transplantation corrects WIP deficiency". J. Allergy Clin. Immunol. 139 (3): 1039–1040.e4. doi:10.1016/j.jaci.2016.08.036. PMID 27742395.
  12. Volkmann N, Amann KJ, Stoilova-McPhie S, Egile C, Winter DC, Hazelwood L, Heuser JE, Li R, Pollard TD, Hanein D (September 2001). "Structure of Arp2/3 complex in its activated state and in actin filament branch junctions". Science. 293 (5539): 2456–9. doi:10.1126/science.1063025. PMID 11533442.
  13. Kahr, Walter H. A.; Pluthero, Fred G.; Elkadri, Abdul; Warner, Neil; Drobac, Marko; Chen, Chang Hua; Lo, Richard W.; Li, Ling; Li, Ren; Li, Qi; Thoeni, Cornelia; Pan, Jie; Leung, Gabriella; Lara-Corrales, Irene; Murchie, Ryan; Cutz, Ernest; Laxer, Ronald M.; Upton, Julia; Roifman, Chaim M.; Yeung, Rae S. M.; Brumell, John H; Muise, Aleixo M (2017). "Loss of the Arp2/3 complex component ARPC1B causes platelet abnormalities and predisposes to inflammatory disease". Nature Communications. 8: 14816. doi:10.1038/ncomms14816. ISSN 2041-1723.
  14. Kuijpers, Taco W.; Tool, Anton T.J.; van der Bijl, Ivo; de Boer, Martin; van Houdt, Michel; de Cuyper, Iris M.; Roos, Dirk; van Alphen, Floris; van Leeuwen, Karin; Cambridge, Emma L.; Arends, Mark J.; Dougan, Gordon; Clare, Simon; Ramirez-Solis, Ramiro; Pals, Steven T.; Adams, David J.; Meijer, Alexander B.; van den Berg, Timo K. (2017). "Combined immunodeficiency with severe inflammation and allergy caused by ARPC1B deficiency". Journal of Allergy and Clinical Immunology. 140 (1): 273–277.e10. doi:10.1016/j.jaci.2016.09.061. ISSN 0091-6749.
  15. Kahr WH, Pluthero FG, Elkadri A, Warner N, Drobac M, Chen CH, Lo RW, Li L, Li R, Li Q, Thoeni C, Pan J, Leung G, Lara-Corrales I, Murchie R, Cutz E, Laxer RM, Upton J, Roifman CM, Yeung RS, Brumell JH, Muise AM (April 2017). "Loss of the Arp2/3 complex component ARPC1B causes platelet abnormalities and predisposes to inflammatory disease". Nat Commun. 8: 14816. doi:10.1038/ncomms14816. PMC 5382316. PMID 28368018.
  16. Lavin MF, Shiloh Y (1997). "The genetic defect in ataxia-telangiectasia". Annu. Rev. Immunol. 15: 177–202. doi:10.1146/annurev.immunol.15.1.177. PMID 9143686.
  17. Gatti RA, Berkel I, Boder E, Braedt G, Charmley P, Concannon P, Ersoy F, Foroud T, Jaspers NG, Lange K (December 1988). "Localization of an ataxia-telangiectasia gene to chromosome 11q22-23". Nature. 336 (6199): 577–80. doi:10.1038/336577a0. PMID 3200306.
  18. Lewis RF, Lederman HM, Crawford TO (September 1999). "Ocular motor abnormalities in ataxia telangiectasia". Ann. Neurol. 46 (3): 287–95. PMID 10482258.
  19. McGrath-Morrow SA, Gower WA, Rothblum-Oviatt C, Brody AS, Langston C, Fan LL, Lefton-Greif MA, Crawford TO, Troche M, Sandlund JT, Auwaerter PG, Easley B, Loughlin GM, Carroll JL, Lederman HM (September 2010). "Evaluation and management of pulmonary disease in ataxia-telangiectasia". Pediatr. Pulmonol. 45 (9): 847–59. doi:10.1002/ppul.21277. PMC 4151879. PMID 20583220.
  20. Greenberger S, Berkun Y, Ben-Zeev B, Levi YB, Barziliai A, Nissenkorn A (June 2013). "Dermatologic manifestations of ataxia-telangiectasia syndrome". J. Am. Acad. Dermatol. 68 (6): 932–6. doi:10.1016/j.jaad.2012.12.950. PMID 23360865.
  21. Wu JT, Book L, Sudar K (January 1981). "Serum alpha fetoprotein (AFP) levels in normal infants". Pediatr. Res. 15 (1): 50–2. PMID 6163129.
  22. 22.0 22.1 Butch AW, Chun HH, Nahas SA, Gatti RA (December 2004). "Immunoassay to measure ataxia-telangiectasia mutated protein in cellular lysates". Clin. Chem. 50 (12): 2302–8. doi:10.1373/clinchem.2004.039461. PMID 15486025.
  23. Conley ME, Notarangelo LD, Etzioni A (December 1999). "Diagnostic criteria for primary immunodeficiencies. Representing PAGID (Pan-American Group for Immunodeficiency) and ESID (European Society for Immunodeficiencies)". Clin. Immunol. 93 (3): 190–7. doi:10.1006/clim.1999.4799. PMID 10600329.
  24. 24.0 24.1 Chrzanowska KH, Gregorek H, Dembowska-Bagińska B, Kalina MA, Digweed M (February 2012). "Nijmegen breakage syndrome (NBS)". Orphanet J Rare Dis. 7: 13. doi:10.1186/1750-1172-7-13. PMC 3314554. PMID 22373003.
  25. Warcoin M, Lespinasse J, Despouy G, Dubois d'Enghien C, Laugé A, Portnoï MF, Christin-Maitre S, Stoppa-Lyonnet D, Stern MH (March 2009). "Fertility defects revealing germline biallelic nonsense NBN mutations". Hum. Mutat. 30 (3): 424–30. doi:10.1002/humu.20904. PMID 19105185.
  26. Chrzanowska KH, Szarras-Czapnik M, Gajdulewicz M, Kalina MA, Gajtko-Metera M, Walewska-Wolf M, Szufladowicz-Wozniak J, Rysiewski H, Gregorek H, Cukrowska B, Syczewska M, Piekutowska-Abramczuk D, Janas R, Krajewska-Walasek M (July 2010). "High prevalence of primary ovarian insufficiency in girls and young women with Nijmegen breakage syndrome: evidence from a longitudinal study". J. Clin. Endocrinol. Metab. 95 (7): 3133–40. doi:10.1210/jc.2009-2628. PMID 20444919.
  27. Antoccia A, Kobayashi J, Tauchi H, Matsuura S, Komatsu K (2006). "Nijmegen breakage syndrome and functions of the responsible protein, NBS1". Genome Dyn. 1: 191–205. doi:10.1159/000092508. PMID 18724061.
  28. 28.0 28.1 Ellis NA, German J (1996). "Molecular genetics of Bloom's syndrome". Hum. Mol. Genet. 5 Spec No: 1457–63. PMID 8875252.
  29. German J (November 1993). "Bloom syndrome: a mendelian prototype of somatic mutational disease". Medicine (Baltimore). 72 (6): 393–406. PMID 8231788.
  30. Karalis A, Tischkowitz M, Millington GW (February 2011). "Dermatological manifestations of inherited cancer syndromes in children". Br. J. Dermatol. 164 (2): 245–56. doi:10.1111/j.1365-2133.2010.10100.x. PMID 20973772.
  31. Amor-Guéret M, Dubois-d'Enghien C, Laugé A, Onclercq-Delic R, Barakat A, Chadli E, Bousfiha AA, Benjelloun M, Flori E, Doray B, Laugel V, Lourenço MT, Gonçalves R, Sousa S, Couturier J, Stoppa-Lyonnet D (June 2008). "Three new BLM gene mutations associated with Bloom syndrome". Genet. Test. 12 (2): 257–61. doi:10.1089/gte.2007.0119. PMID 18471088.
  32. Michels VV, Stevens JC (August 1982). "Basal cell carcinoma in a patient with intestinal polyposis". Clin. Genet. 22 (2): 80–2. PMID 7172481.
  33. Wimmer K, Kratz CP, Vasen HF, Caron O, Colas C, Entz-Werle N, Gerdes AM, Goldberg Y, Ilencikova D, Muleris M, Duval A, Lavoine N, Ruiz-Ponte C, Slavc I, Burkhardt B, Brugieres L (June 2014). "Diagnostic criteria for constitutional mismatch repair deficiency syndrome: suggestions of the European consortium 'care for CMMRD' (C4CMMRD)". J. Med. Genet. 51 (6): 355–65. doi:10.1136/jmedgenet-2014-102284. PMID 24737826.
  34. Nicolaides NC, Papadopoulos N, Liu B, Wei YF, Carter KC, Ruben SM, Rosen CA, Haseltine WA, Fleischmann RD, Fraser CM (September 1994). "Mutations of two PMS homologues in hereditary nonpolyposis colon cancer". Nature. 371 (6492): 75–80. doi:10.1038/371075a0. PMID 8072530.
  35. Jiang YL, Rigolet M, Bourc'his D, Nigon F, Bokesoy I, Fryns JP, Hultén M, Jonveaux P, Maraschio P, Mégarbané A, Moncla A, Viegas-Péquignot E (January 2005). "DNMT3B mutations and DNA methylation defect define two types of ICF syndrome". Hum. Mutat. 25 (1): 56–63. doi:10.1002/humu.20113. PMID 15580563.
  36. 36.0 36.1 Maraschio P, Zuffardi O, Dalla Fior T, Tiepolo L (March 1988). "Immunodeficiency, centromeric heterochromatin instability of chromosomes 1, 9, and 16, and facial anomalies: the ICF syndrome". J. Med. Genet. 25 (3): 173–80. PMC 1015482. PMID 3351904.
  37. Jeanpierre M, Turleau C, Aurias A, Prieur M, Ledeist F, Fischer A, Viegas-Pequignot E (June 1993). "An embryonic-like methylation pattern of classical satellite DNA is observed in ICF syndrome". Hum. Mol. Genet. 2 (6): 731–5. PMID 8102570.
  38. Smeets DF, Moog U, Weemaes CM, Vaes-Peeters G, Merkx GF, Niehof JP, Hamers G (September 1994). "ICF syndrome: a new case and review of the literature". Hum. Genet. 94 (3): 240–6. PMID 8076938.
  39. Fasth A, Forestier E, Holmberg E, Holmgren G, Nordenson I, Söderström T, Wahlström J (1990). "Fragility of the centromeric region of chromosome 1 associated with combined immunodeficiency in siblings. A recessively inherited entity?". Acta Paediatr Scand. 79 (6–7): 605–12. PMID 2386052.
  40. Hagleitner MM, Lankester A, Maraschio P, Hultén M, Fryns JP, Schuetz C, Gimelli G, Davies EG, Gennery A, Belohradsky BH, de Groot R, Gerritsen EJ, Mattina T, Howard PJ, Fasth A, Reisli I, Furthner D, Slatter MA, Cant AJ, Cazzola G, van Dijken PJ, van Deuren M, de Greef JC, van der Maarel SM, Weemaes CM (February 2008). "Clinical spectrum of immunodeficiency, centromeric instability and facial dysmorphism (ICF syndrome)". J. Med. Genet. 45 (2): 93–9. doi:10.1136/jmg.2007.053397. PMID 17893117.
  41. Gennery AR, Slatter MA, Bredius RG, Hagleitner MM, Weemaes C, Cant AJ, Lankester AC (November 2007). "Hematopoietic stem cell transplantation corrects the immunologic abnormalities associated with immunodeficiency-centromeric instability-facial dysmorphism syndrome". Pediatrics. 120 (5): e1341–4. doi:10.1542/peds.2007-0640. PMID 17908720.
  42. Villa A, Sinchetto F, Lanfranconi M (May 1988). "[Pathology of the myocardium and coronary vessels in sudden cardiac death. A post-mortem study of 130 cases]". Minerva Med. (in Italian). 79 (5): 373–8. PMID 3287227.
  43. Gineau L, Cognet C, Kara N, Lach FP, Dunne J, Veturi U, Picard C, Trouillet C, Eidenschenk C, Aoufouchi S, Alcaïs A, Smith O, Geissmann F, Feighery C, Abel L, Smogorzewska A, Stillman B, Vivier E, Casanova JL, Jouanguy E (March 2012). "Partial MCM4 deficiency in patients with growth retardation, adrenal insufficiency, and natural killer cell deficiency". J. Clin. Invest. 122 (3): 821–32. doi:10.1172/JCI61014. PMC 3287233. PMID 22354167.
  44. Casey JP, Nobbs M, McGettigan P, Lynch S, Ennis S (April 2012). "Recessive mutations in MCM4/PRKDC cause a novel syndrome involving a primary immunodeficiency and a disorder of DNA repair". J. Med. Genet. 49 (4): 242–5. doi:10.1136/jmedgenet-2012-100803. PMID 22499342.
  45. 45.0 45.1 Eidenschenk C, Dunne J, Jouanguy E, Fourlinnie C, Gineau L, Bacq D, McMahon C, Smith O, Casanova JL, Abel L, Feighery C (April 2006). "A novel primary immunodeficiency with specific natural-killer cell deficiency maps to the centromeric region of chromosome 8". Am. J. Hum. Genet. 78 (4): 721–7. doi:10.1086/503269. PMC 1424699. PMID 16532402.
  46. Devgan SS, Sanal O, Doil C, Nakamura K, Nahas SA, Pettijohn K, Bartek J, Lukas C, Lukas J, Gatti RA (September 2011). "Homozygous deficiency of ubiquitin-ligase ring-finger protein RNF168 mimics the radiosensitivity syndrome of ataxia-telangiectasia". Cell Death Differ. 18 (9): 1500–6. doi:10.1038/cdd.2011.18. PMC 3178430. PMID 21394101.
  47. 47.0 47.1 Stewart GS, Panier S, Townsend K, Al-Hakim AK, Kolas NK, Miller ES, Nakada S, Ylanko J, Olivarius S, Mendez M, Oldreive C, Wildenhain J, Tagliaferro A, Pelletier L, Taubenheim N, Durandy A, Byrd PJ, Stankovic T, Taylor AM, Durocher D (February 2009). "The RIDDLE syndrome protein mediates a ubiquitin-dependent signaling cascade at sites of DNA damage". Cell. 136 (3): 420–34. doi:10.1016/j.cell.2008.12.042. PMID 19203578.
  48. 48.0 48.1 Stewart GS, Stankovic T, Byrd PJ, Wechsler T, Miller ES, Huissoon A, Drayson MT, West SC, Elledge SJ, Taylor AM (October 2007). "RIDDLE immunodeficiency syndrome is linked to defects in 53BP1-mediated DNA damage signaling". Proc. Natl. Acad. Sci. U.S.A. 104 (43): 16910–5. doi:10.1073/pnas.0708408104. PMC 2040433. PMID 17940005.
  49. Palles C, Cazier JB, Howarth KM, Domingo E, Jones AM, Broderick P, Kemp Z, Spain SL, Guarino E, Guarino Almeida E, Salguero I, Sherborne A, Chubb D, Carvajal-Carmona LG, Ma Y, Kaur K, Dobbins S, Barclay E, Gorman M, Martin L, Kovac MB, Humphray S, Lucassen A, Holmes CC, Bentley D, Donnelly P, Taylor J, Petridis C, Roylance R, Sawyer EJ, Kerr DJ, Clark S, Grimes J, Kearsey SE, Thomas HJ, McVean G, Houlston RS, Tomlinson I (February 2013). "Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas". Nat. Genet. 45 (2): 136–44. doi:10.1038/ng.2503. PMC 3785128. PMID 23263490.
  50. Tamaro M, Dolzani L, Monti-Bragadin C, Sava G (May 1986). "Mutagenic activity of the dacarbazine analog p-(3,3-dimethyl-1-triazeno)benzoic acid potassium salt in bacterial cells". Pharmacol Res Commun. 18 (5): 491–501. PMID 3526359.
  51. Pachlopnik Schmid J, Lemoine R, Nehme N, Cormier-Daire V, Revy P, Debeurme F, Debré M, Nitschke P, Bole-Feysot C, Legeai-Mallet L, Lim A, de Villartay JP, Picard C, Durandy A, Fischer A, de Saint Basile G (December 2012). "Polymerase ε1 mutation in a human syndrome with facial dysmorphism, immunodeficiency, livedo, and short [[stature]] ("FILS syndrome")". J. Exp. Med. 209 (13): 2323–30. doi:10.1084/jem.20121303. PMC 3526359. PMID 23230001. URL–wikilink conflict (help)
  52. Li Y, Asahara H, Patel VS, Zhou S, Linn S (December 1997). "Purification, cDNA cloning, and gene mapping of the small subunit of human DNA polymerase epsilon". J. Biol. Chem. 272 (51): 32337–44. PMID 9405441.
  53. Miller MJ (October 1973). "Industrialization, ecology and health in the tropics". Can J Public Health. 64: Suppl: 11–6. PMID 4747780.
  54. van der Crabben SN, Hennus MP, McGregor GA, Ritter DI, Nagamani SC, Wells OS, Harakalova M, Chinn IK, Alt A, Vondrova L, Hochstenbach R, van Montfrans JM, Terheggen-Lagro SW, van Lieshout S, van Roosmalen MJ, Renkens I, Duran K, Nijman IJ, Kloosterman WP, Hennekam E, Orange JS, van Hasselt PM, Wheeler DA, Palecek JJ, Lehmann AR, Oliver AW, Pearl LH, Plon SE, Murray JM, van Haaften G (August 2016). "Destabilized SMC5/6 complex leads to chromosome breakage syndrome with severe lung disease". J. Clin. Invest. 126 (8): 2881–92. doi:10.1172/JCI82890. PMC 4966312. PMID 27427983.
  55. Rickenbacher J (1968). "The importance of the regulation for the normal and abnormal development. Experimental investigations on the limb buds of chick embryos". Biol Neonat. 12 (1): 65–87. PMID 4966312.
  56. 56.0 56.1 56.2 Tummala H, Kirwan M, Walne AJ, Hossain U, Jackson N, Pondarre C, Plagnol V, Vulliamy T, Dokal I (February 2014). "ERCC6L2 mutations link a distinct bone-marrow-failure syndrome to DNA repair and mitochondrial function". Am. J. Hum. Genet. 94 (2): 246–56. doi:10.1016/j.ajhg.2014.01.007. PMC 3928664. PMID 24507776.
  57. Harrison C, Ketchen AM, Redhead NJ, O'Sullivan MJ, Melton DW (July 2002). "Replication failure, genome instability, and increased cancer susceptibility in mice with a point mutation in the DNA ligase I gene". Cancer Res. 62 (14): 4065–74. PMID 12124343.
  58. Barnes DE, Tomkinson AE, Lehmann AR, Webster AD, Lindahl T (May 1992). "Mutations in the DNA ligase I gene of an individual with immunodeficiencies and cellular hypersensitivity to DNA-damaging agents". Cell. 69 (3): 495–503. PMID 1581963.
  59. Cottineau J, Kottemann MC, Lach FP, Kang YH, Vély F, Deenick EK, Lazarov T, Gineau L, Wang Y, Farina A, Chansel M, Lorenzo L, Piperoglou C, Ma CS, Nitschke P, Belkadi A, Itan Y, Boisson B, Jabot-Hanin F, Picard C, Bustamante J, Eidenschenk C, Boucherit S, Aladjidi N, Lacombe D, Barat P, Qasim W, Hurst JA, Pollard AJ, Uhlig HH, Fieschi C, Michon J, Bermudez VP, Abel L, de Villartay JP, Geissmann F, Tangye SG, Hurwitz J, Vivier E, Casanova JL, Smogorzewska A, Jouanguy E (May 2017). "Inherited GINS1 deficiency underlies growth retardation along with neutropenia and NK cell deficiency". J. Clin. Invest. 127 (5): 1991–2006. doi:10.1172/JCI90727. PMC 5409070. PMID 28414293.
  60. 60.0 60.1 60.2 Ridanpää M, van Eenennaam H, Pelin K, Chadwick R, Johnson C, Yuan B, vanVenrooij W, Pruijn G, Salmela R, Rockas S, Mäkitie O, Kaitila I, de la Chapelle A (January 2001). "Mutations in the RNA component of RNase MRP cause a pleiotropic human disease, cartilage-hair hypoplasia". Cell. 104 (2): 195–203. PMID 11207361.
  61. MCKUSICK VA, ELDRIDGE R, HOSTETLER JA, RUANGWIT U, EGELAND JA (May 1965). "DWARFISM IN THE AMISH. II. CARTILAGE-HAIR HYPOPLASIA". Bull Johns Hopkins Hosp. 116: 285–326. PMID 14284412.
  62. Rider NL, Morton DH, Puffenberger E, Hendrickson CL, Robinson DL, Strauss KA (April 2009). "Immunologic and clinical features of 25 Amish patients with RMRP 70 A-->G cartilage hair hypoplasia". Clin. Immunol. 131 (1): 119–28. doi:10.1016/j.clim.2008.11.001. PMID 19150606.
  63. Mäkitie O, Marttinen E, Kaitila I (1992). "Skeletal growth in cartilage-hair hypoplasia. A radiological study of 82 patients". Pediatr Radiol. 22 (6): 434–9. PMID 1437368.
  64. 64.0 64.1 Boerkoel CF, Takashima H, John J, Yan J, Stankiewicz P, Rosenbarker L, André JL, Bogdanovic R, Burguet A, Cockfield S, Cordeiro I, Fründ S, Illies F, Joseph M, Kaitila I, Lama G, Loirat C, McLeod DR, Milford DV, Petty EM, Rodrigo F, Saraiva JM, Schmidt B, Smith GC, Spranger J, Stein A, Thiele H, Tizard J, Weksberg R, Lupski JR, Stockton DW (February 2002). "Mutant chromatin remodeling protein SMARCAL1 causes Schimke immuno-osseous dysplasia". Nat. Genet. 30 (2): 215–20. doi:10.1038/ng821. PMID 11799392.
  65. Boerkoel CF, O'Neill S, André JL, Benke PJ, Bogdanovíć R, Bulla M, Burguet A, Cockfield S, Cordeiro I, Ehrich JH, Fründ S, Geary DF, Ieshima A, Illies F, Joseph MW, Kaitila I, Lama G, Leheup B, Ludman MD, McLeod DR, Medeira A, Milford DV, Ormälä T, Rener-Primec Z, Santava A, Santos HG, Schmidt B, Smith GC, Spranger J, Zupancic N, Weksberg R (2000). "Manifestations and treatment of Schimke immuno-osseous dysplasia: 14 new cases and a review of the literature". Eur. J. Pediatr. 159 (1–2): 1–7. PMID 10653321.
  66. 66.0 66.1 Petty EM, Yanik GA, Hutchinson RJ, Alter BP, Schmalstieg FC, Levine JE, Ginsburg D, Robillard JE, Castle VP (December 2000). "Successful bone marrow transplantation in a patient with Schimke immuno-osseous dysplasia". J. Pediatr. 137 (6): 882–6. doi:10.1067/mpd.2000.109147. PMID 11113849.
  67. Nikolaev OV, Titov VN (April 1970). "[Surgical treatment of diffuse toxic goiter]". Khirurgiia (Mosk) (in Russian). 46 (4): 121–7. PMID 4098839.
  68. 68.0 68.1 Alsultan A, Shamseldin HE, Osman ME, Aljabri M, Alkuraya FS (November 2013). "MYSM1 is mutated in a family with transient transfusion-dependent anemia, mild thrombocytopenia, and low NK- and B-cell counts". Blood. 122 (23): 3844–5. doi:10.1182/blood-2013-09-527127. PMID 24288411.
  69. 69.0 69.1 Bahrami E, Witzel M, Racek T, Puchałka J, Hollizeck S, Greif-Kohistani N, Kotlarz D, Horny HP, Feederle R, Schmidt H, Sherkat R, Steinemann D, Göhring G, Schlegelbeger B, Albert MH, Al-Herz W, Klein C (October 2017). "Myb-like, SWIRM, and MPN domains 1 (MYSM1) deficiency: Genotoxic stress-associated bone marrow failure and developmental aberrations". J. Allergy Clin. Immunol. 140 (4): 1112–1119. doi:10.1016/j.jaci.2016.10.053. PMID 28115216.
  70. Pierce MJ, Morse RP (March 2012). "The neurologic findings in Taybi-Linder syndrome (MOPD I/III): case report and review of the literature". Am. J. Med. Genet. A. 158A (3): 606–10. doi:10.1002/ajmg.a.33958. PMID 22302400.
  71. Volpi S, Yamazaki Y, Brauer PM, van Rooijen E, Hayashida A, Slavotinek A, Sun Kuehn H, Di Rocco M, Rivolta C, Bortolomai I, Du L, Felgentreff K, Ott de Bruin L, Hayashida K, Freedman G, Marcovecchio GE, Capuder K, Rath P, Luche N, Hagedorn EJ, Buoncompagni A, Royer-Bertrand B, Giliani S, Poliani PL, Imberti L, Dobbs K, Poulain FE, Martini A, Manis J, Linhardt RJ, Bosticardo M, Rosenzweig SD, Lee H, Puck JM, Zúñiga-Pflücker JC, Zon L, Park PW, Superti-Furga A, Notarangelo LD (March 2017). "EXTL3 mutations cause skeletal dysplasia, immune deficiency, and developmental delay". J. Exp. Med. 214 (3): 623–637. doi:10.1084/jem.20161525. PMC 5339678. PMID 28148688.
  72. McDonald-McGinn DM, Sullivan KE (January 2011). "Chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome)". Medicine (Baltimore). 90 (1): 1–18. doi:10.1097/MD.0b013e3182060469. PMID 21200182.
  73. Davies EG (October 2013). "Immunodeficiency in DiGeorge Syndrome and Options for Treating Cases with Complete Athymia". Front Immunol. 4: 322. doi:10.3389/fimmu.2013.00322. PMC 3814041. PMID 24198816.
  74. Allison SE (1973). "A framework for nursing action in a nurse-conducted diabetic management clinic". J Nurs Adm. 3 (4): 53–60. PMID 4492158.
  75. Bassett AS, McDonald-McGinn DM, Devriendt K, Digilio MC, Goldenberg P, Habel A, Marino B, Oskarsdottir S, Philip N, Sullivan K, Swillen A, Vorstman J (August 2011). "Practical guidelines for managing patients with 22q11.2 deletion syndrome". J. Pediatr. 159 (2): 332–9.e1. doi:10.1016/j.jpeds.2011.02.039. PMC 3197829. PMID 21570089.
  76. Källén K, Robert E, Mastroiacovo P, Castilla EE, Källén B (December 1999). "CHARGE Association in newborns: a registry-based study". Teratology. 60 (6): 334–43. doi:10.1002/(SICI)1096-9926(199912)60:6<334::AID-TERA5>3.0.CO;2-S. PMID 10590394.
  77. Sanlaville D, Verloes A (April 2007). "CHARGE syndrome: an update". Eur. J. Hum. Genet. 15 (4): 389–99. doi:10.1038/sj.ejhg.5201778. PMID 17299439.
  78. Chavanas S, Bodemer C, Rochat A, Hamel-Teillac D, Ali M, Irvine AD, Bonafé JL, Wilkinson J, Taïeb A, Barrandon Y, Harper JI, de Prost Y, Hovnanian A (June 2000). "Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton syndrome". Nat. Genet. 25 (2): 141–2. doi:10.1038/75977. PMID 10835624.
  79. NETHERTON EW (October 1958). "A unique case of trichorrhexis nodosa; bamboo hairs". AMA Arch Derm. 78 (4): 483–7. PMID 13582191.
  80. Minegishi Y, Saito M, Nagasawa M, Takada H, Hara T, Tsuchiya S, Agematsu K, Yamada M, Kawamura N, Ariga T, Tsuge I, Karasuyama H (June 2009). "Molecular explanation for the contradiction between systemic Th17 defect and localized bacterial infection in hyper-IgE syndrome". J. Exp. Med. 206 (6): 1291–301. doi:10.1084/jem.20082767. PMC 2715068. PMID 19487419.
  81. 81.0 81.1 Zhang Y, Yu X, Ichikawa M, Lyons JJ, Datta S, Lamborn IT, Jing H, Kim ES, Biancalana M, Wolfe LA, DiMaggio T, Matthews HF, Kranick SM, Stone KD, Holland SM, Reich DS, Hughes JD, Mehmet H, McElwee J, Freeman AF, Freeze HH, Su HC, Milner JD (May 2014). "Autosomal recessive phosphoglucomutase 3 (PGM3) mutations link glycosylation defects to atopy, immune deficiency, autoimmunity, and neurocognitive impairment". J. Allergy Clin. Immunol. 133 (5): 1400–9, 1409.e1–5. doi:10.1016/j.jaci.2014.02.013. PMC 4016982. PMID 24589341.
  82. Sassi A, Lazaroski S, Wu G, Haslam SM, Fliegauf M, Mellouli F, Patiroglu T, Unal E, Ozdemir MA, Jouhadi Z, Khadir K, Ben-Khemis L, Ben-Ali M, Ben-Mustapha I, Borchani L, Pfeifer D, Jakob T, Khemiri M, Asplund AC, Gustafsson MO, Lundin KE, Falk-Sörqvist E, Moens LN, Gungor HE, Engelhardt KR, Dziadzio M, Stauss H, Fleckenstein B, Meier R, Prayitno K, Maul-Pavicic A, Schaffer S, Rakhmanov M, Henneke P, Kraus H, Eibel H, Kölsch U, Nadifi S, Nilsson M, Bejaoui M, Schäffer AA, Smith CI, Dell A, Barbouche MR, Grimbacher B (May 2014). "Hypomorphic homozygous mutations in phosphoglucomutase 3 (PGM3) impair immunity and increase serum IgE levels". J. Allergy Clin. Immunol. 133 (5): 1410–9, 1419.e1–13. doi:10.1016/j.jaci.2014.02.025. PMC 4825677. PMID 24698316.
  83. Hassock S, Vetrie D, Giannelli F (January 1999). "Mapping and characterization of the X-linked dyskeratosis congenita (DKC) gene". Genomics. 55 (1): 21–7. doi:10.1006/geno.1998.5600. PMID 9888995.
  84. Mitchell JR, Wood E, Collins K (December 1999). "A telomerase component is defective in the human disease dyskeratosis congenita". Nature. 402 (6761): 551–5. doi:10.1038/990141. PMID 10591218.
  85. Kirwan M, Dokal I (February 2008). "Dyskeratosis congenita: a genetic disorder of many faces". Clin. Genet. 73 (2): 103–12. doi:10.1111/j.1399-0004.2007.00923.x. PMID 18005359.
  86. Crow YJ, McMenamin J, Haenggeli CA, Hadley DM, Tirupathi S, Treacy EP, Zuberi SM, Browne BH, Tolmie JL, Stephenson JB (February 2004). "Coats' plus: a progressive familial syndrome of bilateral Coats' disease, characteristic cerebral calcification, leukoencephalopathy, slow pre- and post-natal linear growth and defects of bone marrow and integument". Neuropediatrics. 35 (1): 10–9. doi:10.1055/s-2003-43552. PMID 15002047.
  87. Narumi S, Amano N, Ishii T, Katsumata N, Muroya K, Adachi M, Toyoshima K, Tanaka Y, Fukuzawa R, Miyako K, Kinjo S, Ohga S, Ihara K, Inoue H, Kinjo T, Hara T, Kohno M, Yamada S, Urano H, Kitagawa Y, Tsugawa K, Higa A, Miyawaki M, Okutani T, Kizaki Z, Hamada H, Kihara M, Shiga K, Yamaguchi T, Kenmochi M, Kitajima H, Fukami M, Shimizu A, Kudoh J, Shibata S, Okano H, Miyake N, Matsumoto N, Hasegawa T (July 2016). "SAMD9 mutations cause a novel multisystem disorder, MIRAGE syndrome, and are associated with loss of chromosome 7". Nat. Genet. 48 (7): 792–7. doi:10.1038/ng.3569. PMID 27182967.
  88. Metzker A, Eisenstein B, Oren J, Samuel R (February 1988). "Tumoral calcinosis revisited--common and uncommon features. Report of ten cases and review". Eur. J. Pediatr. 147 (2): 128–32. PMID 3366131.
  89. 89.0 89.1 Chen DH, Below JE, Shimamura A, Keel SB, Matsushita M, Wolff J, Sul Y, Bonkowski E, Castella M, Taniguchi T, Nickerson D, Papayannopoulou T, Bird TD, Raskind WH (June 2016). "Ataxia-Pancytopenia Syndrome Is Caused by Missense Mutations in SAMD9L". Am. J. Hum. Genet. 98 (6): 1146–1158. doi:10.1016/j.ajhg.2016.04.009. PMC 4908176. PMID 27259050.
  90. Häberle J, Pauli S, Berning C, Koch HG, Linnebank M (June 2009). "TC II deficiency: avoidance of false-negative molecular genetics by RNA-based investigations". J. Hum. Genet. 54 (6): 331–4. doi:10.1038/jhg.2009.34. PMID 19373259.
  91. Qiu A, Jansen M, Sakaris A, Min SH, Chattopadhyay S, Tsai E, Sandoval C, Zhao R, Akabas MH, Goldman ID (December 2006). "Identification of an intestinal folate transporter and the molecular basis for hereditary folate malabsorption". Cell. 127 (5): 917–28. doi:10.1016/j.cell.2006.09.041. PMID 17129779.
  92. Ramakrishnan KA, Pengelly RJ, Gao Y, Morgan M, Patel SV, Davies EG, Ennis S, Faust SN, Williams AP (2016). "Precision Molecular Diagnosis Defines Specific Therapy in Combined Immunodeficiency with Megaloblastic Anemia Secondary to MTHFD1 Deficiency". J Allergy Clin Immunol Pract. 4 (6): 1160–1166.e10. doi:10.1016/j.jaip.2016.07.014. PMID 27707659.
  93. Watkins D, Schwartzentruber JA, Ganesh J, Orange JS, Kaplan BS, Nunez LD, Majewski J, Rosenblatt DS (September 2011). "Novel inborn error of folate metabolism: identification by exome capture and sequencing of mutations in the MTHFD1 gene in a single proband". J. Med. Genet. 48 (9): 590–2. doi:10.1136/jmedgenet-2011-100286. PMID 21813566.
  94. Orange JS, Geha RS (October 2003). "Finding NEMO: genetic disorders of NF-[kappa]B activation". J. Clin. Invest. 112 (7): 983–5. doi:10.1172/JCI19960. PMC 200971. PMID 14523034.
  95. Orange JS, Levy O, Brodeur SR, Krzewski K, Roy RM, Niemela JE, Fleisher TA, Bonilla FA, Geha RS (September 2004). "Human nuclear factor kappa B essential modulator mutation can result in immunodeficiency without ectodermal dysplasia". J. Allergy Clin. Immunol. 114 (3): 650–6. doi:10.1016/j.jaci.2004.06.052. PMID 15356572.
  96. Mitchell BS, Mejias E, Daddona PE, Kelley WN (October 1978). "Purinogenic immunodeficiency diseases: selective toxicity of deoxyribonucleosides for T cells". Proc. Natl. Acad. Sci. U.S.A. 75 (10): 5011–4. PMC 336252. PMID 311004.
  97. Aust MR, Andrews LG, Barrett MJ, Norby-Slycord CJ, Markert ML (October 1992). "Molecular analysis of mutations in a patient with purine nucleoside phosphorylase deficiency". Am. J. Hum. Genet. 51 (4): 763–72. PMC 1682776. PMID 1384322.
  98. Fernandez I, Patey N, Marchand V, Birlea M, Maranda B, Haddad E, Decaluwe H, Le Deist F (December 2014). "Multiple intestinal atresia with combined immune deficiency related to TTC7A defect is a multiorgan pathology: study of a French-Canadian-based cohort". Medicine (Baltimore). 93 (29): e327. doi:10.1097/MD.0000000000000327. PMC 4602622. PMID 25546680.
  99. Lemoine R, Pachlopnik-Schmid J, Farin HF, Bigorgne A, Debré M, Sepulveda F, Héritier S, Lemale J, Talbotec C, Rieux-Laucat F, Ruemmele F, Morali A, Cathebras P, Nitschke P, Bole-Feysot C, Blanche S, Brousse N, Picard C, Clevers H, Fischer A, de Saint Basile G (December 2014). "Immune deficiency-related enteropathy-lymphocytopenia-alopecia syndrome results from tetratricopeptide repeat domain 7A deficiency". J. Allergy Clin. Immunol. 134 (6): 1354–1364.e6. doi:10.1016/j.jaci.2014.07.019. PMID 25174867.
  100. Roscioli T, Cliffe ST, Bloch DB, Bell CG, Mullan G, Taylor PJ, Sarris M, Wang J, Donald JA, Kirk EP, Ziegler JB, Salzer U, McDonald GB, Wong M, Lindeman R, Buckley MF (June 2006). "Mutations in the gene encoding the PML nuclear body protein Sp110 are associated with immunodeficiency and hepatic veno-occlusive disease". Nat. Genet. 38 (6): 620–2. doi:10.1038/ng1780. PMID 16648851.
  101. Cullup T, Kho AL, Dionisi-Vici C, Brandmeier B, Smith F, Urry Z, Simpson MA, Yau S, Bertini E, McClelland V, Al-Owain M, Koelker S, Koerner C, Hoffmann GF, Wijburg FA, ten Hoedt AE, Rogers RC, Manchester D, Miyata R, Hayashi M, Said E, Soler D, Kroisel PM, Windpassinger C, Filloux FM, Al-Kaabi S, Hertecant J, Del Campo M, Buk S, Bodi I, Goebel HH, Sewry CA, Abbs S, Mohammed S, Josifova D, Gautel M, Jungbluth H (January 2013). "Recessive mutations in EPG5 cause Vici syndrome, a multisystem disorder with defective autophagy". Nat. Genet. 45 (1): 83–7. doi:10.1038/ng.2497. PMC 4012842. PMID 23222957.
  102. Al-Owain M, Al-Hashem A, Al-Muhaizea M, Humaidan H, Al-Hindi H, Al-Homoud I, Al-Mogarri I (July 2010). "Vici syndrome associated with unilateral lung hypoplasia and myopathy". Am. J. Med. Genet. A. 152A (7): 1849–53. doi:10.1002/ajmg.a.33421. PMID 20583151.
  103. Finocchi A, Angelino G, Cantarutti N, Corbari M, Bevivino E, Cascioli S, Randisi F, Bertini E, Dionisi-Vici C (February 2012). "Immunodeficiency in Vici syndrome: a heterogeneous phenotype". Am. J. Med. Genet. A. 158A (2): 434–9. doi:10.1002/ajmg.a.34244. PMID 21965116.
  104. Nilsson J, Schoser B, Laforet P, Kalev O, Lindberg C, Romero NB, Dávila López M, Akman HO, Wahbi K, Iglseder S, Eggers C, Engel AG, Dimauro S, Oldfors A (December 2013). "Polyglucosan body myopathy caused by defective ubiquitin ligase RBCK1". Ann. Neurol. 74 (6): 914–9. doi:10.1002/ana.23963. PMID 23798481.
  105. 105.0 105.1 Boisson B, Laplantine E, Prando C, Giliani S, Israelsson E, Xu Z, Abhyankar A, Israël L, Trevejo-Nunez G, Bogunovic D, Cepika AM, MacDuff D, Chrabieh M, Hubeau M, Bajolle F, Debré M, Mazzolari E, Vairo D, Agou F, Virgin HW, Bossuyt X, Rambaud C, Facchetti F, Bonnet D, Quartier P, Fournet JC, Pascual V, Chaussabel D, Notarangelo LD, Puel A, Israël A, Casanova JL, Picard C (December 2012). "Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency". Nat. Immunol. 13 (12): 1178–86. doi:10.1038/ni.2457. PMC 3514453. PMID 23104095.
  106. McCarl CA, Picard C, Khalil S, Kawasaki T, Röther J, Papolos A, Kutok J, Hivroz C, Ledeist F, Plogmann K, Ehl S, Notheis G, Albert MH, Belohradsky BH, Kirschner J, Rao A, Fischer A, Feske S (December 2009). "ORAI1 deficiency and lack of store-operated Ca2+ entry cause immunodeficiency, myopathy, and ectodermal dysplasia". J. Allergy Clin. Immunol. 124 (6): 1311–1318.e7. doi:10.1016/j.jaci.2009.10.007. PMC 2829767. PMID 20004786.
  107. Shahrizaila N, Lowe J, Wills A (September 2004). "Familial myopathy with tubular aggregates associated with abnormal pupils". Neurology. 63 (6): 1111–3. PMID 15452313.
  108. Garibaldi M, Fattori F, Riva B, Labasse C, Brochier G, Ottaviani P, Sacconi S, Vizzaccaro E, Laschena F, Romero NB, Genazzani A, Bertini E, Antonini G (May 2017). "A novel gain-of-function mutation in ORAI1 causes late-onset tubular aggregate myopathy and congenital miosis". Clin. Genet. 91 (5): 780–786. doi:10.1111/cge.12888. PMID 27882542.
  109. Parry DA, Holmes TD, Gamper N, El-Sayed W, Hettiarachchi NT, Ahmed M, Cook GP, Logan CV, Johnson CA, Joss S, Peers C, Prescott K, Savic S, Inglehearn CF, Mighell AJ (March 2016). "A homozygous STIM1 mutation impairs store-operated calcium entry and natural killer cell effector function without clinical immunodeficiency". J. Allergy Clin. Immunol. 137 (3): 955–7.e8. doi:10.1016/j.jaci.2015.08.051. PMC 4775071. PMID 26560041.
  110. Byun M, Abhyankar A, Lelarge V, Plancoulaine S, Palanduz A, Telhan L, Boisson B, Picard C, Dewell S, Zhao C, Jouanguy E, Feske S, Abel L, Casanova JL (October 2010). "Whole-exome sequencing-based discovery of STIM1 deficiency in a child with fatal classic Kaposi sarcoma". J. Exp. Med. 207 (11): 2307–12. doi:10.1084/jem.20101597. PMC 2964585. PMID 20876309.
  111. 111.0 111.1 Alders M, Al-Gazali L, Cordeiro I, Dallapiccola B, Garavelli L, Tuysuz B, Salehi F, Haagmans MA, Mook OR, Majoie CB, Mannens MM, Hennekam RC (September 2014). "Hennekam syndrome can be caused by FAT4 mutations and be allelic to Van Maldergem syndrome". Hum. Genet. 133 (9): 1161–7. doi:10.1007/s00439-014-1456-y. PMID 24913602.
  112. Kofoed EM, Hwa V, Little B, Woods KA, Buckway CK, Tsubaki J, Pratt KL, Bezrodnik L, Jasper H, Tepper A, Heinrich JJ, Rosenfeld RG (September 2003). "Growth hormone insensitivity associated with a STAT5b mutation". N. Engl. J. Med. 349 (12): 1139–47. doi:10.1056/NEJMoa022926. PMID 13679528.
  113. Wang D, Stravopodis D, Teglund S, Kitazawa J, Ihle JN (November 1996). "Naturally occurring dominant negative variants of Stat5". Mol. Cell. Biol. 16 (11): 6141–8. PMC 231617. PMID 8887644.
  114. Hwa V, Camacho-Hübner C, Little BM, David A, Metherell LA, El-Khatib N, Savage MO, Rosenfeld RG (2007). "Growth hormone insensitivity and severe short stature in siblings: a novel mutation at the exon 13-intron 13 junction of the STAT5b gene". Horm. Res. 68 (5): 218–24. doi:10.1159/000101334. PMID 17389811.
  115. Hwa V, Little B, Adiyaman P, Kofoed EM, Pratt KL, Ocal G, Berberoglu M, Rosenfeld RG (July 2005). "Severe growth hormone insensitivity resulting from total absence of signal transducer and activator of transcription 5b". J. Clin. Endocrinol. Metab. 90 (7): 4260–6. doi:10.1210/jc.2005-0515. PMID 15827093.
  116. Niikawa N, Matsuura N, Fukushima Y, Ohsawa T, Kajii T (October 1981). "Kabuki make-up syndrome: a syndrome of mental retardation, unusual facies, large and protruding ears, and postnatal growth deficiency". J. Pediatr. 99 (4): 565–9. PMID 7277096.
  117. Matsune K, Shimizu T, Tohma T, Asada Y, Ohashi H, Maeda T (January 2001). "Craniofacial and dental characteristics of Kabuki syndrome". Am. J. Med. Genet. 98 (2): 185–90. PMID 11223856.
  118. Petzold D, Kratzsch E, Opitz C, Tinschert S (February 2003). "The Kabuki syndrome: four patients with oral abnormalities". Eur J Orthod. 25 (1): 13–9. PMID 12608719. Vancouver style error: initials (help)