Y chromosome: Difference between revisions

Jump to navigation Jump to search
Genes: added DFNY1
Discovery: She -> He
Line 9: Line 9:
| type = [[Allosome]]
| type = [[Allosome]]
| centromere_position = [[Centromere#Acrocentric|Acrocentric]]<ref name="StrachanRead2010">{{cite book|author1=Tom Strachan|author2=Andrew Read|title=Human Molecular Genetics|url=https://books.google.com/books?id=dSwWBAAAQBAJ&pg=PA45|date=2 April 2010|publisher=Garland Science|isbn=978-1-136-84407-2|page=45}}</ref><br/>(10.4 Mbp<ref name="850bphs">Genome Decoration Page, NCBI.  [ftp://ftp.ncbi.nlm.nih.gov/pub/gdp/ideogram_9606_GCF_000001305.14_850_V1 Ideogram data for Homo sapience (850 bphs, Assembly GRCh38.p3)]. Last update 2014-06-03. Retrieved 2017-04-26.</ref>)
| centromere_position = [[Centromere#Acrocentric|Acrocentric]]<ref name="StrachanRead2010">{{cite book|author1=Tom Strachan|author2=Andrew Read|title=Human Molecular Genetics|url=https://books.google.com/books?id=dSwWBAAAQBAJ&pg=PA45|date=2 April 2010|publisher=Garland Science|isbn=978-1-136-84407-2|page=45}}</ref><br/>(10.4 Mbp<ref name="850bphs">Genome Decoration Page, NCBI.  [ftp://ftp.ncbi.nlm.nih.gov/pub/gdp/ideogram_9606_GCF_000001305.14_850_V1 Ideogram data for Homo sapience (850 bphs, Assembly GRCh38.p3)]. Last update 2014-06-03. Retrieved 2017-04-26.</ref>)
| chr = Y
| ensembl_id = Y
| ensembl_id = Y
| entrez_id = Y
| entrez_id = Y
Line 16: Line 17:
| genbank_id = CM000686
| genbank_id = CM000686
}}
}}
The '''Y chromosome''' is one of two sex [[chromosome]]s ([[allosome]]s) in [[mammal]]s, including [[human]]s, and many other animals. The other is the [[X chromosome]]. Y is the [[Sex-determination system|sex-determining]] chromosome in many [[species]], since it is the presence or absence of Y that determines the male or female [[sex]] of [[offspring]] produced in [[sexual reproduction]]. In mammals, the Y chromosome contains the [[gene]] [[SRY]], which triggers [[testis]] development. The [[DNA]] in the human Y chromosome is composed of about 59 million [[base pairs]].<ref name="Chromosome Y">{{cite web |url = http://www.ensembl.org/Homo_sapiens/mapview?chr=Y |title = Ensembl Human MapView release 43 |date = February 2014 |accessdate = 2007-04-14}}</ref> The Y chromosome is passed only from father to son. With a 30% difference between humans and chimpanzees, the Y chromosome is one of the fastest-evolving parts of the [[human genome]].<ref>{{cite news|last=Wade|first=Nicholas|title=Male Chromosome May Evolve Fastest|url=https://www.nytimes.com/2010/01/14/science/14gene.html|newspaper=New York Times|date=January 13, 2010}}</ref> To date, over 200 Y-linked genes have been identified.<ref name="National Center for Biotechnology Information">{{Cite book| title = Genes and Disease| publisher = National Center for Biotechnology Information| location = Bethesda, Maryland|url = https://www.ncbi.nlm.nih.gov/books/NBK22266/#A296}}</ref> All Y-linked genes are expressed and (apart from duplicated genes) [[hemizygous]] (present on only one chromosome) except in the cases of [[aneuploidy]] such as [[XYY syndrome]] or [[XXYY syndrome]]. (See [[Y linkage]].)
The '''Y chromosome''' is one of two sex [[chromosome]]s ([[allosome]]s) in [[mammal]]s, including [[human]]s, and many other animals. The other is the [[X chromosome]]. Y is the [[Sex-determination system|sex-determining]] chromosome in many [[species]], since it is the presence or absence of Y that determines the male or female [[sex]] of [[offspring]] produced in [[sexual reproduction]]. In mammals, the Y chromosome contains the [[gene]] [[SRY]], which triggers [[testis]] development. The [[DNA]] in the human Y chromosome is composed of about 59 million [[base pairs]].<ref name="Chromosome Y">{{cite web |url = http://www.ensembl.org/Homo_sapiens/mapview?chr=Y |title = Ensembl Human MapView release 43 |date = February 2014 |accessdate = 2007-04-14}}</ref> The Y chromosome is passed only from father to son. With a 30% difference between humans and chimpanzees, the Y chromosome is one of the fastest-evolving parts of the [[human genome]].<ref>{{cite news|last=Wade|first=Nicholas|title=Male Chromosome May Evolve Fastest|url=https://www.nytimes.com/2010/01/14/science/14gene.html|newspaper=New York Times|date=January 13, 2010}}</ref> To date, over 200 Y-linked genes have been identified.<ref name="National Center for Biotechnology Information">{{Cite book| title = Genes and Disease| publisher = National Center for Biotechnology Information| location = Bethesda, Maryland|url = https://www.ncbi.nlm.nih.gov/books/NBK22266/#A296}}</ref> All Y-linked genes are expressed and (apart from duplicated genes) [[hemizygous]] (present on only one chromosome) except in the cases of [[aneuploidy]] such as [[XYY syndrome]] or [[XXYY syndrome]].


== Overview ==
== Overview ==


===Discovery===
===Discovery===
The Y chromosome was identified as a sex-determining chromosome by [[Nettie Stevens]] at [[Bryn Mawr College]] in 1905 during a study of the [[mealworm]] ''Tenebrio molitor''. [[Edmund Beecher Wilson]] independently discovered the same mechanisms the same year. Stevens proposed that chromosomes always existed in pairs and that the Y chromosome was the pair of the X chromosome discovered in 1890 by [[Hermann Henking]]. She realized that the previous idea of [[Clarence Erwin McClung]], that the X chromosome determines sex, was wrong and that [[Sex-determination system|sex determination]] is, in fact, due to the presence or absence of the Y chromosome. Stevens named the chromosome "Y" simply to follow on from Henking's "X" alphabetically.<ref>David Bainbridge, 'The X in Sex: How the X Chromosome Controls Our Lives'', pages 3-5, 13, [[Harvard University Press]], 2003 {{ISBN|0674016211}}.</ref><ref>James Schwartz, ''In Pursuit of the Gene: From Darwin to DNA'', pages 170-172, [[Harvard University Press]], 2009 {{ISBN|0674034910}}</ref>
The Y chromosome was identified as a sex-determining chromosome by [[Nettie Stevens]] at [[Bryn Mawr College]] in 1905 during a study of the [[mealworm]] ''Tenebrio molitor''. [[Edmund Beecher Wilson]] independently discovered the same mechanisms the same year. Stevens proposed that chromosomes always existed in pairs and that the Y chromosome was the pair of the X chromosome discovered in 1890 by [[Hermann Henking]]. He realized that the previous idea of [[Clarence Erwin McClung]], that the X chromosome determines sex, was wrong and that [[Sex-determination system|sex determination]] is, in fact, due to the presence or absence of the Y chromosome. Stevens named the chromosome "Y" simply to follow on from Henking's "X" alphabetically.<ref>David Bainbridge, ''The X in Sex: How the X Chromosome Controls Our Lives'', pages 3-5, 13, [[Harvard University Press]], 2003 {{ISBN|0674016211}}.</ref><ref>James Schwartz, ''In Pursuit of the Gene: From Darwin to DNA'', pages 170-172, [[Harvard University Press]], 2009 {{ISBN|0674034910}}</ref>


The idea that the Y chromosome was named after its similarity in appearance to the letter "Y" is mistaken.  All chromosomes normally appear as an amorphous blob under the microscope and only take on a well-defined shape during [[mitosis]]. This shape is vaguely X-shaped for all chromosomes.  It is entirely coincidental that the Y chromosome, during [[mitosis]], has two very short branches which can look merged under the microscope and appear as the descender of a Y-shape.<ref>Bainbridge, pages 65-66</ref>
The idea that the Y chromosome was named after its similarity in appearance to the letter "Y" is mistaken.  All chromosomes normally appear as an amorphous blob under the microscope and only take on a well-defined shape during [[mitosis]]. This shape is vaguely X-shaped for all chromosomes.  It is entirely coincidental that the Y chromosome, during [[mitosis]], has two very short branches which can look merged under the microscope and appear as the descender of a Y-shape.<ref>Bainbridge, pages 65-66</ref>


===Variations===
===Variations===
Most mammals have only one pair of sex chromosomes in each cell. Males have one Y chromosome and one [[X chromosome]], while females have two X chromosomes. In mammals, the Y chromosome contains a gene, [[SRY]], which triggers embryonic development as a male. The Y chromosomes of humans and other mammals also contain other genes needed for normal sperm production.
{{See also|Androgen insensitivity syndrome|Intersex}}
Most [[theria]]n mammals have only one pair of sex chromosomes in each cell. Males have one Y chromosome and one [[X chromosome]], while females have two X chromosomes. In mammals, the Y chromosome contains a gene, [[SRY]], which triggers embryonic development as a male. The Y chromosomes of humans and other mammals also contain other genes needed for normal sperm production.


There are exceptions, however. For example, the [[platypus]] relies on an [[XY sex-determination system]] based on five pairs of chromosomes.<ref name="Grützner">{{cite journal |vauthors=Grützner F, Rens W, Tsend-Ayush E |title=In the platypus a meiotic chain of ten sex chromosomes shares genes with the bird Z and mammal X chromosomes |journal=Nature |volume=432 |pages=913–9177 |year=2004 |doi=10.1038/nature03021 |url= |pmid=15502814 |issue=7019 |displayauthors=etal  }}</ref> Platypus sex chromosomes in fact appear to bear a much stronger [[Homology (biology)|homology]] (similarity) with the avian [[ZW sex-determination system|Z chromosome]],<ref name="Warren">{{cite journal |vauthors=Warren WC, Hillier LD, Graves JA |title=Genome analysis of the platypus reveals unique signatures of evolution |journal=Nature |volume=453 |pages=175–183 |year=2008 |doi=10.1038/nature06936 |url=http://www.nature.com/nature/journal/v453/n7192/full/nature06936.html |pmid=18464734 |issue=7192 |pmc=2803040 |displayauthors=etal  }}</ref> and the SRY gene so central to sex-determination in most other mammals is apparently not involved in platypus sex-determination.<ref name="Veyrunes">{{cite journal |vauthors=Veyrunes F, Waters PD, Miethke P |title=Bird-like sex chromosomes of platypus imply recent origin of mammal sex chromosomes |journal=Genome Research |volume=18 |pages=965–973 |year=2008 |doi=10.1101/gr.7101908 |url=http://genome.cshlp.org/content/18/6/965.abstract |pmid=18463302 |issue=6 |pmc=2413164 |displayauthors=etal  }}</ref> Among humans, some men have two Xs and a Y ("XXY", see [[Klinefelter syndrome]]), or one X and two Ys (see [[XYY syndrome]]), and [[triple X syndrome|some women have three Xs]] or a single X instead of a double X ("X0", see [[Turner syndrome]]).  There are other exceptions in which [[SRY]] is damaged (leading to an [[Swyer syndrome|XY female]]), or copied to the X (leading to an [[XX male]]). For related phenomena, see [[Androgen insensitivity syndrome]] and [[Intersex]].
There are exceptions, however. For example, the [[platypus]] relies on an [[XY sex-determination system]] based on five pairs of chromosomes.<ref name="Grützner">{{cite journal |vauthors=Grützner F, Rens W, Tsend-Ayush E |title=In the platypus a meiotic chain of ten sex chromosomes shares genes with the bird Z and mammal X chromosomes |journal=Nature |volume=432 |pages=913–9177 |year=2004 |doi=10.1038/nature03021 |url= |pmid=15502814 |issue=7019 |displayauthors=etal  |bibcode=2004Natur.432..913G }}</ref> Platypus sex chromosomes have strong sequence similarity with the avian [[ZW sex-determination system|Z chromosome]], (indicating close [[Sequence homology|homology]]),<ref name="Warren">{{cite journal |vauthors=Warren WC, Hillier LD, Graves JA |title=Genome analysis of the platypus reveals unique signatures of evolution |journal=Nature |volume=453 |pages=175–183 |year=2008 |doi=10.1038/nature06936 |url=http://www.nature.com/nature/journal/v453/n7192/full/nature06936.html |pmid=18464734 |issue=7192 |pmc=2803040 |displayauthors=etal  |bibcode=2008Natur.453..175W }}</ref> and the SRY gene so central to sex-determination in most other mammals is apparently not involved in platypus sex-determination.<ref name="Veyrunes">{{cite journal |vauthors=Veyrunes F, Waters PD, Miethke P |title=Bird-like sex chromosomes of platypus imply recent origin of mammal sex chromosomes |journal=Genome Research |volume=18 |pages=965–973 |year=2008 |doi=10.1101/gr.7101908 |url=http://genome.cshlp.org/content/18/6/965.abstract |pmid=18463302 |issue=6 |pmc=2413164 |displayauthors=etal  }}</ref> Among humans, some men have two Xs and a Y ("XXY", see [[Klinefelter syndrome]]), or one X and two Ys (see [[XYY syndrome]]), and [[triple X syndrome|some women have three Xs]] or a single X instead of a double X ("X0", see [[Turner syndrome]]).  There are other exceptions in which [[SRY]] is damaged (leading to an [[Swyer syndrome|XY female]]), or copied to the X (leading to an [[XX male]]).


== Origins and evolution ==
== Origins and evolution ==
Line 38: Line 40:
The X and Y chromosomes are thought to have evolved from a pair of identical chromosomes,<ref name="muller">{{cite journal |author=Muller, H. J. |title=A gene for the fourth chromosome of Drosophila |journal=Journal of Experimental Zoology |volume=17 |issue=3 |pages=325–336 |year=1914 |doi=10.1002/jez.1400170303}}</ref><ref name="lahn">{{cite journal |vauthors=Lahn B, Page D |title=Four evolutionary strata on the human X chromosome |journal=Science |volume=286 |issue=5441 |pages=964–7 |year=1999 |pmid=10542153 |doi=10.1126/science.286.5441.964}}<!--http://www.abc.net.au/science/news/stories/s63100.htm [replaced]--></ref> termed [[autosome]]s, when an ancestral animal developed an allelic variation, a so-called "sex locus" – simply possessing this [[allele]] caused the organism to be male.<ref name="Graves, J.A.M 2006" /> The chromosome with this allele became the Y chromosome, while the other member of the pair became the X chromosome. Over time, genes that were beneficial for males and harmful to (or had no effect on) females either developed on the Y chromosome or were acquired through the process of [[chromosomal translocation|translocation]].<ref>{{cite journal |author1=Graves J. A. M. |author2=Koina E. |author3=Sankovic N. |title=How the gene content of human sex chromosomes evolved |journal=Curr Opin Genet Dev |volume=16 |issue=3 |pages=219–24 |year=2006 |pmid=16650758 |doi=10.1016/j.gde.2006.04.007}}</ref>
The X and Y chromosomes are thought to have evolved from a pair of identical chromosomes,<ref name="muller">{{cite journal |author=Muller, H. J. |title=A gene for the fourth chromosome of Drosophila |journal=Journal of Experimental Zoology |volume=17 |issue=3 |pages=325–336 |year=1914 |doi=10.1002/jez.1400170303}}</ref><ref name="lahn">{{cite journal |vauthors=Lahn B, Page D |title=Four evolutionary strata on the human X chromosome |journal=Science |volume=286 |issue=5441 |pages=964–7 |year=1999 |pmid=10542153 |doi=10.1126/science.286.5441.964}}<!--http://www.abc.net.au/science/news/stories/s63100.htm [replaced]--></ref> termed [[autosome]]s, when an ancestral animal developed an allelic variation, a so-called "sex locus" – simply possessing this [[allele]] caused the organism to be male.<ref name="Graves, J.A.M 2006" /> The chromosome with this allele became the Y chromosome, while the other member of the pair became the X chromosome. Over time, genes that were beneficial for males and harmful to (or had no effect on) females either developed on the Y chromosome or were acquired through the process of [[chromosomal translocation|translocation]].<ref>{{cite journal |author1=Graves J. A. M. |author2=Koina E. |author3=Sankovic N. |title=How the gene content of human sex chromosomes evolved |journal=Curr Opin Genet Dev |volume=16 |issue=3 |pages=219–24 |year=2006 |pmid=16650758 |doi=10.1016/j.gde.2006.04.007}}</ref>


Until recently, the X and Y chromosomes were thought to have diverged around 300 million years ago. However, research published in 2010,<ref>{{cite web |url=http://www.npr.org/blogs/health/2010/01/human_male_still_a_work_in_pro.html |title=Human Male: Still A Work in Progress |work=NPR |date=January 13, 2010 |first=Jon |last=Hamilton }}</ref> and particularly research published in 2008 documenting the sequencing of the platypus genome,<ref name="Warren" /> has suggested that the XY sex-determination system would not have been present more than 166 million years ago, at the split of the [[monotreme]]s from other mammals.<ref name="Veyrunes" /> This re-estimation of the age of the [[theria]]n XY system is based on the finding that sequences that are on the X chromosomes of marsupials and [[eutherian]] mammals are present on the autosomes of platypus and birds.<ref name="Veyrunes" /> The older estimate was based on erroneous reports that the platypus X chromosomes contained these sequences.<ref name="Grützner" /><ref>{{cite journal |last=Watson |first=Jaclyn M. |first2=Arthur |last2=Riggs |first3=Jennifer A. Marshall |last3=Graves |title=Gene mapping studies confirm the homology between the platypus X and echidna X1 chromosomes and identify a conserved ancestral monotreme X chromosome |year=1992 |journal=Chromosoma |volume=101 |issue=10 |pages=596–601 |doi=10.1007/BF00360536 }}</ref>
Until recently, the X and Y chromosomes were thought to have diverged around 300 million years ago.<ref>{{cite web|pmc=4120474|title=Y chromosome evolution: emerging insights into processes of Y chromosome degeneration}}</ref> However, research published in 2010,<ref>{{cite web |url=https://www.npr.org/blogs/health/2010/01/human_male_still_a_work_in_pro.html |title=Human Male: Still A Work in Progress |work=NPR |date=January 13, 2010 |first=Jon |last=Hamilton }}</ref> and particularly research published in 2008 documenting the sequencing of the platypus genome,<ref name="Warren" /> has suggested that the XY sex-determination system would not have been present more than 166 million years ago, at the split of the [[monotreme]]s from other mammals.<ref name="Veyrunes" /> This re-estimation of the age of the [[theria]]n XY system is based on the finding that sequences that are on the X chromosomes of marsupials and [[eutherian]] mammals are present on the autosomes of [[platypus]] and birds.<ref name="Veyrunes" /> The older estimate was based on erroneous reports that the platypus X chromosomes contained these sequences.<ref name="Grützner" /><ref>{{cite journal |last=Watson |first=Jaclyn M. |first2=Arthur |last2=Riggs |first3=Jennifer A. Marshall |last3=Graves |title=Gene mapping studies confirm the homology between the platypus X and echidna X1 chromosomes and identify a conserved ancestral monotreme X chromosome |year=1992 |journal=Chromosoma |volume=101 |issue=10 |pages=596–601 |doi=10.1007/BF00360536 }}</ref>


===Recombination inhibition===
===Recombination inhibition===
[[Genetic recombination|Recombination]] between the X and Y chromosomes proved harmful—it resulted in males without necessary genes formerly found on the Y chromosome, and females with unnecessary or even harmful genes previously only found on the Y chromosome.  As a result, genes beneficial to males accumulated near the sex-determining genes, and recombination in this region was suppressed in order to preserve this male specific region.<ref name="Graves, J.A.M 2006" /> Over time, the Y chromosome changed in such a way as to inhibit the areas around the sex determining genes from recombining at all with the X chromosome. As a result of this process, 95% of the human Y chromosome is unable to recombine. Only the tips of the Y and X chromosomes recombine. The tips of the Y chromosome that could recombine with the X chromosome are referred to as the [[pseudoautosomal region]].  The rest of the Y chromosome is passed on to the next generation intact. It is because of this disregard for the rules that the Y chromosome is such a superb tool for investigating recent human evolution.
[[Genetic recombination|Recombination]] between the X and Y chromosomes proved harmful—it resulted in males without necessary genes formerly found on the Y chromosome, and females with unnecessary or even harmful genes previously only found on the Y chromosome.  As a result, genes beneficial to males accumulated near the sex-determining genes, and recombination in this region was suppressed in order to preserve this male specific region.<ref name="Graves, J.A.M 2006" /> Over time, the Y chromosome changed in such a way as to inhibit the areas around the sex determining genes from recombining at all with the X chromosome. As a result of this process, 95% of the human Y chromosome is unable to recombine. Only the tips of the Y and X chromosomes recombine. The tips of the Y chromosome that could recombine with the X chromosome are referred to as the [[pseudoautosomal region]].  The rest of the Y chromosome is passed on to the next generation intact, allowing for its use in tracking human evolution.{{Citation needed|date=October 2018}}


===Degeneration===
===Degeneration===
By one estimate, the human Y chromosome has lost 1,393 of its 1,438 original genes over the course of its existence, and [[Extrapolation|linear extrapolation]] of this 1,393-gene loss over 300 million years gives a rate of genetic loss of 4.6 genes per million years.<ref>{{cite journal |last=Graves |first=J. A. M. |year=2004 |title=The degenerate Y chromosome—can conversion save it? |journal=Reproduction Fertility and Development |volume=16 |issue=5 |pages=527–534 |doi=10.1071/RD03096 |pmid=15367368 }}</ref>  Continued loss of genes at the rate of 4.6 genes per million years would result in a Y chromosome with no functional genes – that is the Y chromosome would lose complete function – within the next 10 million years, or half that time with the current age estimate of 160 million years.<ref name="Graves, J.A.M 2006" /><ref>{{cite journal |last=Goto |first=H. |first2=L. |last2=Peng |first3=K. D. |last3=Makova |year=2009 |title=Evolution of X-degenerate Y chromosome genes in greater apes: conservation of gene content in human and gorilla, but not chimpanzee |journal=Journal of Molecular Evolution |volume=68 |issue=2 |pages=134–144 |doi=10.1007/s00239-008-9189-y |pmid=19142680 }}</ref> Comparative genomic analysis reveals that many mammalian species are experiencing a similar loss of function in their heterozygous sex chromosome. Degeneration may simply be the fate of all non-recombining sex chromosomes, due to three common evolutionary forces: high [[mutation rate]], inefficient [[Selection (biology)|selection]], and [[genetic drift]].<ref name="Graves, J.A.M 2006">{{cite journal |last=Graves |first=J. A. M. |year=2006 |title=Sex chromosome specialization and degeneration in mammals |journal=[[Cell (journal)|Cell]] |volume=124 |issue=5 |pages=901–914 |doi=10.1016/j.cell.2006.02.024 |pmid=16530039 }}</ref>
By one estimate, the human Y chromosome has lost 1,393 of its 1,438 original genes over the course of its existence, and [[Extrapolation|linear extrapolation]] of this 1,393-gene loss over 300 million years gives a rate of genetic loss of 4.6 genes per million years.<ref>{{cite journal |last=Graves |first=J. A. M. |year=2004 |title=The degenerate Y chromosome—can conversion save it? |journal=Reproduction Fertility and Development |volume=16 |issue=5 |pages=527–534 |doi=10.1071/RD03096 |pmid=15367368 }}</ref>  Continued loss of genes at the rate of 4.6 genes per million years would result in a Y chromosome with no functional genes – that is the Y chromosome would lose complete function – within the next 10 million years, or half that time with the current age estimate of 160 million years.<ref name="Graves, J.A.M 2006" /><ref>{{cite journal |last=Goto |first=H. |first2=L. |last2=Peng |first3=K. D. |last3=Makova |year=2009 |title=Evolution of X-degenerate Y chromosome genes in greater apes: conservation of gene content in human and gorilla, but not chimpanzee |journal=Journal of Molecular Evolution |volume=68 |issue=2 |pages=134–144 |doi=10.1007/s00239-008-9189-y |pmid=19142680 |bibcode=2009JMolE..68..134G }}</ref> Comparative genomic analysis reveals that many mammalian species are experiencing a similar loss of function in their heterozygous sex chromosome. Degeneration may simply be the fate of all non-recombining sex chromosomes, due to three common evolutionary forces: high [[mutation rate]], inefficient [[Selection (biology)|selection]], and [[genetic drift]].<ref name="Graves, J.A.M 2006">{{cite journal |last=Graves |first=J. A. M. |year=2006 |title=Sex chromosome specialization and degeneration in mammals |journal=[[Cell (journal)|Cell]] |volume=124 |issue=5 |pages=901–914 |doi=10.1016/j.cell.2006.02.024 |pmid=16530039 }}</ref>


However, comparisons of the human and [[chimpanzee]] Y chromosomes (first published in 2005) show that the human Y chromosome has not lost any genes since the divergence of humans and chimpanzees between 6–7 million years ago,<ref>{{cite journal |last=Hughes |first=Jennifer F. |year=2005 |title=Conservation of Y-linked genes during human evolution revealed by comparative sequencing in chimpanzee |journal=Nature |volume=437 |issue=7055 |pages=100–103 |doi=10.1038/nature04101 |pmid=16136134 |display-authors=etal}}</ref> and a scientific report in 2012 stated that only one gene had been lost since humans diverged from the rhesus macaque 25 million years ago.<ref>{{cite web|last=Hsu|first=Christine|title=Biologists Debunk the 'Rotting' Y Chromosome Theory, Men Will Still Exist|url=http://www.medicaldaily.com/news/20120222/9163/y-chromosome-chromosome-theory-men-extinct-monkey-x-chromosome-biology.htm|publisher=Medical Daily}}</ref>  These facts provide direct evidence that the linear extrapolation model is flawed and suggest that the current human Y chromosome is either no longer shrinking or is shrinking at a much slower rate than the 4.6 genes per million years estimated by the linear extrapolation model.
However, comparisons of the human and [[chimpanzee]] Y chromosomes (first published in 2005) show that the human Y chromosome has not lost any genes since the divergence of humans and chimpanzees between 6–7 million years ago,<ref>{{cite journal |last=Hughes |first=Jennifer F. |year=2005 |title=Conservation of Y-linked genes during human evolution revealed by comparative sequencing in chimpanzee |journal=Nature |volume=437 |issue=7055 |pages=100–103 |doi=10.1038/nature04101 |pmid=16136134 |display-authors=etal|bibcode=2005Natur.437..100H }}</ref> and a scientific report in 2012 stated that only one gene had been lost since humans diverged from the rhesus macaque 25 million years ago.<ref>{{cite web|last=Hsu|first=Christine|title=Biologists Debunk the 'Rotting' Y Chromosome Theory, Men Will Still Exist|url=http://www.medicaldaily.com/news/20120222/9163/y-chromosome-chromosome-theory-men-extinct-monkey-x-chromosome-biology.htm|publisher=Medical Daily}}</ref>  These facts provide direct evidence that the linear extrapolation model is flawed and suggest that the current human Y chromosome is either no longer shrinking or is shrinking at a much slower rate than the 4.6 genes per million years estimated by the linear extrapolation model.


====High mutation rate====
====High mutation rate====
The human Y chromosome is particularly exposed to high mutation rates due to the environment in which it is housed. The Y chromosome is passed exclusively through [[sperm]], which undergo multiple [[cell division]]s during [[gametogenesis]]. Each cellular division provides further opportunity to accumulate base pair mutations. Additionally, sperm are stored in the highly oxidative environment of the testis, which encourages further mutation. These two conditions combined put the Y chromosome at a greater risk of mutation than the rest of the genome.<ref name="Graves, J.A.M 2006"/> The increased mutation risk for the Y chromosome is reported by Graves as a factor 4.8.<ref name="Graves, J.A.M 2006" /> However, her original reference obtains this number for the relative mutation rates in male and female germ lines for the lineage leading to humans.<ref>{{cite journal |vauthors=Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M, Clamp M, Chang JL, Kulbokas EJ, Zody MC, Mauceli E, Xie X, Breen M, Wayne RK, Ostrander EA, Ponting CP, Galibert F, Smith DR, DeJong PJ, Kirkness E, Alvarez P, Biagi T, Brockman W, Butler J, Chin CW, Cook A, Cuff J, Daly MJ, DeCaprio D, Gnerre S, Grabherr M, Kellis M, Kleber M, Bardeleben C, Goodstadt L, Heger A, Hitte C, Kim L, Koepfli KP, Parker HG, Pollinger JP, Searle SM, Sutter NB, Thomas R, Webber C, Baldwin J, Abebe A, Abouelleil A, Aftuck L, Ait-Zahra M, Aldredge T, Allen N, An P, Anderson S, Antoine C, Arachchi H, Aslam A, Ayotte L, Bachantsang P, Barry A, Bayul T, Benamara M, Berlin A, Bessette D, Blitshteyn B, Bloom T, Blye J, Boguslavskiy L, Bonnet C, Boukhgalter B, Brown A, Cahill P, Calixte N, Camarata J, Cheshatsang Y, Chu J, Citroen M, Collymore A, Cooke P, Dawoe T, Daza R, Decktor K, DeGray S, Dhargay N, Dooley K, Dooley K, Dorje P, Dorjee K, Dorris L, Duffey N, Dupes A, Egbiremolen O, Elong R, Falk J, Farina A, Faro S, Ferguson D, Ferreira P, Fisher S, FitzGerald M, Foley K, Foley C, Franke A, Friedrich D, Gage D, Garber M, Gearin G, Giannoukos G, Goode T, Goyette A, Graham J, Grandbois E, Gyaltsen K, Hafez N, Hagopian D, Hagos B, Hall J, Healy C, Hegarty R, Honan T, Horn A, Houde N, Hughes L, Hunnicutt L, Husby M, Jester B, Jones C, Kamat A, Kanga B, Kells C, Khazanovich D, Kieu AC, Kisner P, Kumar M, Lance K, Landers T, Lara M, Lee W, Leger JP, Lennon N, Leuper L, LeVine S, Liu J, Liu X, Lokyitsang Y, Lokyitsang T, Lui A, Macdonald J, Major J, Marabella R, Maru K, Matthews C, McDonough S, Mehta T, Meldrim J, Melnikov A, Meneus L, Mihalev A, Mihova T, Miller K, Mittelman R, Mlenga V, Mulrain L, Munson G, Navidi A, Naylor J, Nguyen T, Nguyen N, Nguyen C, Nguyen T, Nicol R, Norbu N, Norbu C, Novod N, Nyima T, Olandt P, O'Neill B, O'Neill K, Osman S, Oyono L, Patti C, Perrin D, Phunkhang P, Pierre F, Priest M, Rachupka A, Raghuraman S, Rameau R, Ray V, Raymond C, Rege F, Rise C, Rogers J, Rogov P, Sahalie J, Settipalli S, Sharpe T, Shea T, Sheehan M, Sherpa N, Shi J, Shih D, Sloan J, Smith C, Sparrow T, Stalker J, Stange-Thomann N, Stavropoulos S, Stone C, Stone S, Sykes S, Tchuinga P, Tenzing P, Tesfaye S, Thoulutsang D, Thoulutsang Y, Topham K, Topping I, Tsamla T, Vassiliev H, Venkataraman V, Vo A, Wangchuk T, Wangdi T, Weiand M, Wilkinson J, Wilson A, Yadav S, Yang S, Yang X, Young G, Yu Q, Zainoun J, Zembek L, Zimmer A, Lander ES |title=Genome sequence, comparative analysis and haplotype structure of the domestic dog |journal=Nature |volume=438 |issue=7069 |pages=803–819 |date=December 2005 |pmid=16341006 |doi=10.1038/nature04338 }}</ref>
The human Y chromosome is particularly exposed to high mutation rates due to the environment in which it is housed. The Y chromosome is passed exclusively through [[sperm]], which undergo multiple [[cell division]]s during [[gametogenesis]]. Each cellular division provides further opportunity to accumulate base pair mutations. Additionally, sperm are stored in the highly oxidative environment of the testis, which encourages further mutation. These two conditions combined put the Y chromosome at a greater risk of mutation than the rest of the genome.<ref name="Graves, J.A.M 2006"/> The increased mutation risk for the Y chromosome is reported by Graves as a factor 4.8.<ref name="Graves, J.A.M 2006" /> However, her original reference obtains this number for the relative mutation rates in male and female germ lines for the lineage leading to humans.<ref>{{cite journal |vauthors=Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M, Clamp M, Chang JL, Kulbokas EJ, Zody MC, Mauceli E, Xie X, Breen M, Wayne RK, Ostrander EA, Ponting CP, Galibert F, Smith DR, DeJong PJ, Kirkness E, Alvarez P, Biagi T, Brockman W, Butler J, Chin CW, Cook A, Cuff J, Daly MJ, DeCaprio D, Gnerre S, Grabherr M, Kellis M, Kleber M, Bardeleben C, Goodstadt L, Heger A, Hitte C, Kim L, Koepfli KP, Parker HG, Pollinger JP, Searle SM, Sutter NB, Thomas R, Webber C, Baldwin J, Abebe A, Abouelleil A, Aftuck L, Ait-Zahra M, Aldredge T, Allen N, An P, Anderson S, Antoine C, Arachchi H, Aslam A, Ayotte L, Bachantsang P, Barry A, Bayul T, Benamara M, Berlin A, Bessette D, Blitshteyn B, Bloom T, Blye J, Boguslavskiy L, Bonnet C, Boukhgalter B, Brown A, Cahill P, Calixte N, Camarata J, Cheshatsang Y, Chu J, Citroen M, Collymore A, Cooke P, Dawoe T, Daza R, Decktor K, DeGray S, Dhargay N, Dooley K, Dooley K, Dorje P, Dorjee K, Dorris L, Duffey N, Dupes A, Egbiremolen O, Elong R, Falk J, Farina A, Faro S, Ferguson D, Ferreira P, Fisher S, FitzGerald M, Foley K, Foley C, Franke A, Friedrich D, Gage D, Garber M, Gearin G, Giannoukos G, Goode T, Goyette A, Graham J, Grandbois E, Gyaltsen K, Hafez N, Hagopian D, Hagos B, Hall J, Healy C, Hegarty R, Honan T, Horn A, Houde N, Hughes L, Hunnicutt L, Husby M, Jester B, Jones C, Kamat A, Kanga B, Kells C, Khazanovich D, Kieu AC, Kisner P, Kumar M, Lance K, Landers T, Lara M, Lee W, Leger JP, Lennon N, Leuper L, LeVine S, Liu J, Liu X, Lokyitsang Y, Lokyitsang T, Lui A, Macdonald J, Major J, Marabella R, Maru K, Matthews C, McDonough S, Mehta T, Meldrim J, Melnikov A, Meneus L, Mihalev A, Mihova T, Miller K, Mittelman R, Mlenga V, Mulrain L, Munson G, Navidi A, Naylor J, Nguyen T, Nguyen N, Nguyen C, Nguyen T, Nicol R, Norbu N, Norbu C, Novod N, Nyima T, Olandt P, O'Neill B, O'Neill K, Osman S, Oyono L, Patti C, Perrin D, Phunkhang P, Pierre F, Priest M, Rachupka A, Raghuraman S, Rameau R, Ray V, Raymond C, Rege F, Rise C, Rogers J, Rogov P, Sahalie J, Settipalli S, Sharpe T, Shea T, Sheehan M, Sherpa N, Shi J, Shih D, Sloan J, Smith C, Sparrow T, Stalker J, Stange-Thomann N, Stavropoulos S, Stone C, Stone S, Sykes S, Tchuinga P, Tenzing P, Tesfaye S, Thoulutsang D, Thoulutsang Y, Topham K, Topping I, Tsamla T, Vassiliev H, Venkataraman V, Vo A, Wangchuk T, Wangdi T, Weiand M, Wilkinson J, Wilson A, Yadav S, Yang S, Yang X, Young G, Yu Q, Zainoun J, Zembek L, Zimmer A, Lander ES|display-authors = 6 |title=Genome sequence, comparative analysis and haplotype structure of the domestic dog |journal=Nature |volume=438 |issue=7069 |pages=803–819 |date=December 2005 |pmid=16341006 |doi=10.1038/nature04338 |bibcode=2005Natur.438..803L }}</ref>


====Inefficient selection====
====Inefficient selection====
Without the ability to recombine during [[meiosis]], the Y chromosome is unable to expose individual [[allele]]s to natural selection. Deleterious alleles are allowed to "hitchhike" with beneficial neighbors, thus propagating maladapted alleles in to the next generation. Conversely, advantageous alleles may be selected against if they are surrounded by harmful alleles (background selection). Due to this inability to sort through its gene content, the Y chromosome is particularly prone to the accumulation of [[Noncoding DNA|"junk" DNA]]. Massive accumulations of retrotransposable elements are scattered throughout the Y.<ref name="Graves, J.A.M 2006"/> The random insertion of DNA segments often disrupts encoded gene sequences and renders them nonfunctional. However, the Y chromosome has no way of weeding out these "jumping genes". Without the ability to isolate alleles, selection cannot effectively act upon them.
Without the ability to recombine during [[meiosis]], the Y chromosome is unable to expose individual [[allele]]s to natural selection. Deleterious alleles are allowed to "hitchhike" with beneficial neighbors, thus propagating maladapted alleles in to the next generation. Conversely, advantageous alleles may be selected against if they are surrounded by harmful alleles (background selection). Due to this inability to sort through its gene content, the Y chromosome is particularly prone to the accumulation of [[Noncoding DNA|"junk" DNA]]. Massive accumulations of retrotransposable elements are scattered throughout the Y.<ref name="Graves, J.A.M 2006"/> The random insertion of DNA segments often disrupts encoded gene sequences and renders them nonfunctional. However, the Y chromosome has no way of weeding out these "jumping genes". Without the ability to isolate alleles, selection cannot effectively act upon them.{{Citation needed|date=October 2018}}


A clear, quantitative indication of this inefficiency is the [[entropy rate]] of the Y chromosome. Whereas all other chromosomes in the [[human genome]] have entropy rates of 1.5–1.9 bits per nucleotide (compared to the theoretical maximum of exactly 2 for no redundancy), the Y chromosome's entropy rate is only 0.84.<ref name="Liu">{{cite journal |first=Zhandong |last=Liu |first2=Santosh S. |last2=Venkatesh |first3=Carlo C. |last3=Maley |title=Sequence space coverage, entropy of genomes and the potential to detect non-human DNA in human samples |journal=BMC Genomics |year=2008 |volume=9 |issue= 1|pages=509 |doi=10.1186/1471-2164-9-509 |pmid=18973670 |pmc=2628393}} Fig. 6, using the [[Lempel-Ziv]] estimators of entropy rate.</ref> This means the Y chromosome has a much lower information content relative to its overall length; it is more redundant.
A clear, quantitative indication of this inefficiency is the [[entropy rate]] of the Y chromosome. Whereas all other chromosomes in the [[human genome]] have entropy rates of 1.5–1.9 bits per nucleotide (compared to the theoretical maximum of exactly 2 for no redundancy), the Y chromosome's entropy rate is only 0.84.<ref name="Liu">{{cite journal |first=Zhandong |last=Liu |first2=Santosh S. |last2=Venkatesh |first3=Carlo C. |last3=Maley |title=Sequence space coverage, entropy of genomes and the potential to detect non-human DNA in human samples |journal=BMC Genomics |year=2008 |volume=9 |issue= 1|pages=509 |doi=10.1186/1471-2164-9-509 |pmid=18973670 |pmc=2628393}} Fig. 6, using the [[Lempel-Ziv]] estimators of entropy rate.</ref> This means the Y chromosome has a much lower information content relative to its overall length; it is more redundant.


====Genetic drift====
====Genetic drift====
Even if a well adapted Y chromosome manages to maintain genetic activity by avoiding mutation accumulation, there is no guarantee it will be passed down to the next generation. The population size of the Y chromosome is inherently limited to 1/4 that of autosomes: diploid organisms contain two copies of autosomal chromosomes while only half the population contains 1 Y chromosome. Thus, genetic drift is an exceptionally strong force acting upon the Y chromosome. Through sheer random assortment, an adult male may never pass on his Y chromosome if he only has female offspring. Thus, although a male may have a well adapted Y chromosome free of excessive mutation, it may never make it in to the next gene pool.<ref name="Graves, J.A.M 2006"/> The repeat random loss of well-adapted Y chromosomes, coupled with the tendency of the Y chromosome to evolve to have more deleterious mutations rather than less for reasons described above, contributes to the species-wide degeneration of Y chromosomes through [[Muller's ratchet]].<ref>{{cite journal |last=Charlesworth |first=B. |first2=D. |last2=Charlesworth |year=2000 |title=The degeneration of Y chromosomes |journal=[[Philosophical Transactions of the Royal Society B]] |volume=355 |issue=1403 |pages=1563–1572 |doi=10.1098/rstb.2000.0717 }}</ref>
Even if a well adapted Y chromosome manages to maintain genetic activity by avoiding mutation accumulation, there is no guarantee it will be passed down to the next generation. The population size of the Y chromosome is inherently limited to 1/4 that of autosomes: diploid organisms contain two copies of autosomal chromosomes while only half the population contains 1 Y chromosome. Thus, genetic drift is an exceptionally strong force acting upon the Y chromosome. Through sheer random assortment, an adult male may never pass on his Y chromosome if he only has female offspring. Thus, although a male may have a well adapted Y chromosome free of excessive mutation, it may never make it in to the next gene pool.<ref name="Graves, J.A.M 2006"/> The repeat random loss of well-adapted Y chromosomes, coupled with the tendency of the Y chromosome to evolve to have more deleterious mutations rather than less for reasons described above, contributes to the species-wide degeneration of Y chromosomes through [[Muller's ratchet]].<ref>{{cite journal |last=Charlesworth |first=B. |first2=D. |last2=Charlesworth |year=2000 |title=The degeneration of Y chromosomes |journal=[[Philosophical Transactions of the Royal Society B]] |volume=355 |issue=1403 |pages=1563–1572 |doi=10.1098/rstb.2000.0717 |pmc=1692900 }}</ref>


=== Gene conversion ===
=== Gene conversion ===
As it has been already mentioned, the Y chromosome is unable to recombine during [[meiosis]] like the other human chromosomes; however, in 2003, researchers from [[Massachusetts Institute of Technology|MIT]] discovered a process which may slow down the process of degradation.
As it has been already mentioned, the Y chromosome is unable to recombine during [[meiosis]] like the other human chromosomes; however, in 2003, researchers from [[Massachusetts Institute of Technology|MIT]] discovered a process which may slow down the process of degradation.
They found that human Y chromosome is able to "recombine" with itself, using [[palindrome]] [[base pair]] sequences.<ref name="rozen">{{cite journal |vauthors=Rozen S, Skaletsky H, Marszalek J, Minx P, Cordum H, Waterston R, Wilson R, Page D |title=Abundant gene conversion between arms of palindromes in human and ape Y chromosomes |journal=Nature |volume=423 |issue=6942 |pages=873–6 |year=2003 |pmid=12815433 |doi=10.1038/nature01723}}</ref>  Such a "recombination" is called [[gene conversion]].
They found that human Y chromosome is able to "recombine" with itself, using [[palindrome]] [[base pair]] sequences.<ref name="rozen">{{cite journal |vauthors=Rozen S, Skaletsky H, Marszalek J, Minx P, Cordum H, Waterston R, Wilson R, Page D |title=Abundant gene conversion between arms of palindromes in human and ape Y chromosomes |journal=Nature |volume=423 |issue=6942 |pages=873–6 |year=2003 |pmid=12815433 |doi=10.1038/nature01723|bibcode=2003Natur.423..873R }}</ref>  Such a "recombination" is called [[gene conversion]].


In the case of the Y chromosomes, the [[palindrome]]s are not [[noncoding DNA]]; these strings of bases contain functioning genes important for male fertility. Most of the sequence pairs are greater than 99.97% identical. The extensive use of gene conversion may play a role in the ability of the Y chromosome to edit out genetic mistakes and maintain the integrity of the relatively few genes it carries. In other words, since the Y chromosome is single, it has duplicates of its genes on itself instead of having a second, homologous, chromosome. When errors occur, it can use other parts of itself as a template to correct them.
In the case of the Y chromosomes, the [[palindrome]]s are not [[noncoding DNA]]; these strings of bases contain functioning genes important for male fertility. Most of the sequence pairs are greater than 99.97% identical. The extensive use of gene conversion may play a role in the ability of the Y chromosome to edit out genetic mistakes and maintain the integrity of the relatively few genes it carries. In other words, since the Y chromosome is single, it has duplicates of its genes on itself instead of having a second, homologous, chromosome. When errors occur, it can use other parts of itself as a template to correct them.{{Citation needed|date=October 2018}}


Findings were confirmed by comparing similar regions of the Y chromosome in humans to the Y chromosomes of [[chimpanzee]]s, [[bonobo]]s and [[gorilla]]s. The comparison demonstrated that the same phenomenon of gene conversion appeared to be at work more than 5 million years ago, when humans and the non-human primates diverged from each other.
Findings were confirmed by comparing similar regions of the Y chromosome in humans to the Y chromosomes of [[chimpanzee]]s, [[bonobo]]s and [[gorilla]]s. The comparison demonstrated that the same phenomenon of gene conversion appeared to be at work more than 5 million years ago, when humans and the non-human primates diverged from each other.{{Citation needed|date=October 2018}}


=== Future evolution ===
=== Future evolution ===
Line 73: Line 75:
*The [[wood lemming]] ''Myopus schisticolor'', the [[Arctic lemming]], ''Dicrostonyx torquatus'', and multiple species in the grass mouse genus ''[[Akodon]]'' have evolved fertile females who possess the genotype generally coding for males, XY, in addition to the ancestral XX female, through a variety of modifications to the X and Y chromosomes.<ref name="Marchal 2003" /><ref>{{cite journal |last=Hoekstra |first=H. E. |first2=S. V. |last2=Edwards |year=2000 |title=Multiple origins of XY female mice (genus ''Akodon''): phylogenetic and chromosomal evidence |journal=Proceedings of the Royal Society B |volume=267 |issue=1455 |pages=1825–1831 |doi=10.1098/rspb.2000.1217 |pmc=1690748 |pmid=11052532}}</ref><ref>{{cite journal |last=Ortiz |first=M. I. |first2=E. |last2=Pinna-Senn |first3=G. |last3=Dalmasso |first4=J. A. |last4=Lisanti |year=2009 |title=Chromosomal aspects and inheritance of the XY female condition in ''Akodon azarae'' (Rodentia, Sigmodontinae) |journal=Mammalian Biology |volume=74 |issue=2 |pages=125–129 |doi=10.1016/j.mambio.2008.03.001 }}</ref>
*The [[wood lemming]] ''Myopus schisticolor'', the [[Arctic lemming]], ''Dicrostonyx torquatus'', and multiple species in the grass mouse genus ''[[Akodon]]'' have evolved fertile females who possess the genotype generally coding for males, XY, in addition to the ancestral XX female, through a variety of modifications to the X and Y chromosomes.<ref name="Marchal 2003" /><ref>{{cite journal |last=Hoekstra |first=H. E. |first2=S. V. |last2=Edwards |year=2000 |title=Multiple origins of XY female mice (genus ''Akodon''): phylogenetic and chromosomal evidence |journal=Proceedings of the Royal Society B |volume=267 |issue=1455 |pages=1825–1831 |doi=10.1098/rspb.2000.1217 |pmc=1690748 |pmid=11052532}}</ref><ref>{{cite journal |last=Ortiz |first=M. I. |first2=E. |last2=Pinna-Senn |first3=G. |last3=Dalmasso |first4=J. A. |last4=Lisanti |year=2009 |title=Chromosomal aspects and inheritance of the XY female condition in ''Akodon azarae'' (Rodentia, Sigmodontinae) |journal=Mammalian Biology |volume=74 |issue=2 |pages=125–129 |doi=10.1016/j.mambio.2008.03.001 }}</ref>
*In the [[creeping vole]], ''Microtus oregoni'', the females, with just one X chromosome each, produce X gametes only, and the males, XY, produce Y gametes, or gametes devoid of any sex chromosome, through [[nondisjunction]].<ref>{{cite journal |last=Charlesworth |first=B. |first2=N. D. |last2=Dempsey |year=2001 |title=A model of the evolution of the unusual sex chromosome system of ''Microtus oregoni'' |journal=Heredity |volume=86 |issue=4 |pages=387–394 |doi=10.1046/j.1365-2540.2001.00803.x |pmid=11520338 }}</ref>
*In the [[creeping vole]], ''Microtus oregoni'', the females, with just one X chromosome each, produce X gametes only, and the males, XY, produce Y gametes, or gametes devoid of any sex chromosome, through [[nondisjunction]].<ref>{{cite journal |last=Charlesworth |first=B. |first2=N. D. |last2=Dempsey |year=2001 |title=A model of the evolution of the unusual sex chromosome system of ''Microtus oregoni'' |journal=Heredity |volume=86 |issue=4 |pages=387–394 |doi=10.1046/j.1365-2540.2001.00803.x |pmid=11520338 }}</ref>
Outside of the rodent family, the [[Hairy-fronted muntjac|black muntjac]], ''Muntiacus crinifrons'', evolved new X and Y chromosomes through fusions of the ancestral sex chromosomes and [[autosome]]s.<ref>{{cite journal |last=Zhou |first=Q. |first2=J. |last2=Wang |first3=L. |last3=Huang |first4=W. H. |last4=Nie |first5=J. H. |last5=Wang |first6=Y. |last6=Liu |first7=X. Y. |last7=Zhao |year=2008 |title=Neo-sex chromosomes in the black muntjac recapitulate incipient evolution of mammalian sex chromosomes |journal=Genome Biology |volume=9 |issue=6 |pages=R98 |doi=10.1186/gb-2008-9-6-r98 |pmid=18554412 |pmc=2481430|display-authors=etal}}</ref>
Outside of the rodents, the [[Hairy-fronted muntjac|black muntjac]], ''Muntiacus crinifrons'', evolved new X and Y chromosomes through fusions of the ancestral sex chromosomes and [[autosome]]s.<ref>{{cite journal |last=Zhou |first=Q. |first2=J. |last2=Wang |first3=L. |last3=Huang |first4=W. H. |last4=Nie |first5=J. H. |last5=Wang |first6=Y. |last6=Liu |first7=X. Y. |last7=Zhao |year=2008 |title=Neo-sex chromosomes in the black muntjac recapitulate incipient evolution of mammalian sex chromosomes |journal=Genome Biology |volume=9 |issue=6 |pages=R98 |doi=10.1186/gb-2008-9-6-r98 |pmid=18554412 |pmc=2481430|display-authors=etal}}</ref>


===1:1 sex ratio===
===1:1 sex ratio===
[[Fisher's principle]] outlines why almost all species using [[sexual reproduction]] have a [[sex ratio]] of 1:1, meaning that in the case of humans, 50% of offspring will receive a Y chromosome, and 50% will not. [[W. D. Hamilton]] gave the following basic explanation in his 1967 paper on "Extraordinary sex ratios",<ref name=Hamilton67>{{cite journal | doi = 10.1126/science.156.3774.477 | last1 = Hamilton | first1 = W. D. | year = 1967 | title = Extraordinary sex ratios | url = http://www.sciencemag.org/cgi/content/refs/156/3774/477 | journal = Science | volume = 156 | issue = 3774| pages = 477–488 | pmid = 6021675 |bibcode = 1967Sci...156..477H }}</ref> given the condition that males and females cost equal amounts to produce:<!-- this is a better explanation than Fisher's contorted text-->
[[Fisher's principle]] outlines why almost all species using [[sexual reproduction]] have a [[sex ratio]] of 1:1. [[W. D. Hamilton]] gave the following basic explanation in his 1967 paper on "Extraordinary sex ratios",<ref name=Hamilton67>{{cite journal | doi = 10.1126/science.156.3774.477 | last1 = Hamilton | first1 = W. D. | year = 1967 | title = Extraordinary sex ratios | url = http://www.sciencemag.org/cgi/content/refs/156/3774/477 | journal = Science | volume = 156 | issue = 3774| pages = 477–488 | pmid = 6021675 |bibcode = 1967Sci...156..477H }}</ref> given the condition that males and females cost equal amounts to produce:<!-- this is a better explanation than Fisher's contorted text-->


:# Suppose male births are less common than female.
:# Suppose male births are less common than female.
:# A newborn male then has better mating prospects than a newborn female, and therefore can expect to have more offspring.
:# A newborn male then has better mating prospects than a newborn female, and therefore can expect to have more offspring.
:# Therefore parents genetically disposed to produce males tend to have more than average numbers of grandchildren born to them.
:# Therefore, parents genetically disposed to produce males tend to have more than average numbers of grandchildren born to them.
:# Therefore the genes for male-producing tendencies spread, and male births become more common.
:# Therefore, the genes for male-producing tendencies spread, and male births become more common.
:# As the 1:1 sex ratio is approached, the advantage associated with producing males dies away.
:# As the 1:1 sex ratio is approached, the advantage associated with producing males dies away.
:# The same reasoning holds if females are substituted for males throughout. Therefore 1:1 is the equilibrium ratio.
:# The same reasoning holds if females are substituted for males throughout. Therefore, 1:1 is the equilibrium ratio.


==Non-mammal Y chromosome==
==Non-mammal Y chromosome==
Line 89: Line 91:


===ZW chromosomes===
===ZW chromosomes===
Other organisms have mirror image sex chromosomes: where the homogeneous sex is the male, said to have two Z chromosomes, and the female is the heterogeneous sex, and said to have a Z chromosome and a [[ZW sex-determination system|W chromosome]]. For example, female birds, snakes, and butterflies have ZW sex chromosomes, and males have ZZ sex chromosomes.
Other organisms have mirror image sex chromosomes: where the homogeneous sex is the male, said to have two Z chromosomes, and the female is the heterogeneous sex, and said to have a Z chromosome and a [[ZW sex-determination system|W chromosome]]. For example, female birds, snakes, and butterflies have ZW sex chromosomes, and males have ZZ sex chromosomes.{{Citation needed|date=October 2018}}


===Non-inverted Y chromosome===
===Non-inverted Y chromosome===
There are some species, such as the [[Japanese rice fish]], the XY system is still developing and cross over between the X and Y is still possible. Because the male specific region is very small and contains no essential genes, it is even possible to artificially induce XX males and YY females to no ill effect<ref name=Schartl>{{cite journal| author = Schartl, Manfred| title = A comparative view on sex determination in medaka| journal = Mechanisms of Development| volume = 121|issue=7–8| pages = 639–645| date = July 2004| url = http://www.sciencedirect.com/science/article/pii/S0925477304000371| accessdate =6 December 2011| doi=10.1016/j.mod.2004.03.001| pmid = 15210173}}</ref>
There are some species, such as the [[Japanese rice fish]], the XY system is still developing and cross over between the X and Y is still possible. Because the male specific region is very small and contains no essential genes, it is even possible to artificially induce XX males and YY females to no ill effect.<ref name=Schartl>{{cite journal| author = Schartl, Manfred| title = A comparative view on sex determination in medaka| journal = Mechanisms of Development| volume = 121|issue=7–8| pages = 639–645| date = July 2004| url = http://www.sciencedirect.com/science/article/pii/S0925477304000371| accessdate =6 December 2011| doi=10.1016/j.mod.2004.03.001| pmid = 15210173}}</ref>


==Human Y chromosome==
==Human Y chromosome==
In humans, the Y chromosome spans about 58 million [[base pair]]s (the building blocks of [[DNA]]) and represents approximately 1% of the total DNA in a male [[cell (biology)|cell]].<ref>[http://ghr.nlm.nih.gov/chromosome=Y National Library of Medicine's Genetic Home Reference]</ref> The human Y chromosome contains over 200 genes, at least 72 of which code for proteins.<ref name="Chromosome Y"/> Traits that are inherited via the Y chromosome are called holandric traits (although biologists will usually just say "Y-linked").
In humans, the Y chromosome spans about 58 million [[base pair]]s (the building blocks of [[DNA]]) and represents approximately 1% of the total DNA in a male [[cell (biology)|cell]].<ref>[http://ghr.nlm.nih.gov/chromosome=Y National Library of Medicine's Genetic Home Reference]</ref> The human Y chromosome contains over 200 genes, at least 72 of which code for proteins.<ref name="Chromosome Y"/> Traits that are inherited via the Y chromosome are called [[Y linkage|Y-linked]], or holandric traits.


Some cells, especially in older men and [[tobacco smoking|smokers]], lack a Y chromosome. It has been found that men with a higher percentage of [[haematopoiesis|hematopoietic]] [[stem cells]] in blood lacking the Y chromosome (and perhaps a higher percentage of other cells lacking it) have a higher risk of certain [[cancer]]s and have a shorter life expectancy. Men with "loss of Y" (which was defined as no Y in at least 18% of their hematopoietic cells) have been found to die 5.5 years earlier on average than others. This has been interpreted as a sign that the Y chromosome plays a role going beyond sex determination and reproduction<ref>{{cite journal|author1=Lars A. Forsberg|title=Mosaic loss of chromosome Y in peripheral blood is associated with shorter survival and higher risk of cancer|journal=Nature Genetics|date=April 2014|volume=46|pages=624–628 |pmid=24777449 |doi=10.1038/ng.2966|issue=6|display-authors=etal}}</ref> (although the loss of Y may be an effect rather than a cause). And yet women, who have no Y chromosome, have lower rates of cancer. Male smokers have between 1.5 and 2 times the risk of non-respiratory cancers as female smokers.<ref>{{cite journal|author1=Andy Coghlan|title=Y men are more likely to get cancer than women|journal=New Scientist|date=13 December 2014|page=17|url=https://www.newscientist.com/article/mg22429995.800-y-men-are-more-likely-to-get-cancer-than-women.html}}</ref><ref>{{cite journal|author1=Jan P. Dumanski|title=Smoking is associated with mosaic loss of chromosome Y|journal=Science|date=December 2014 |pmid=25477213 |doi=10.1126/science.1262092|volume=347|issue=6217|pages=81–3|display-authors=etal|pmc=4356728}}</ref>
Some cells, especially in older men and [[tobacco smoking|smokers]], lack a Y chromosome. It has been found that men with a higher percentage of [[haematopoiesis|hematopoietic]] [[stem cells]] in blood lacking the Y chromosome (and perhaps a higher percentage of other cells lacking it) have a higher risk of certain [[cancer]]s and have a shorter life expectancy. Men with "loss of Y" (which was defined as no Y in at least 18% of their hematopoietic cells) have been found to die 5.5 years earlier on average than others. This has been interpreted as a sign that the Y chromosome plays a role going beyond sex determination and reproduction<ref>{{cite journal|author1=Lars A. Forsberg|title=Mosaic loss of chromosome Y in peripheral blood is associated with shorter survival and higher risk of cancer|journal=Nature Genetics|date=April 2014|volume=46|pages=624–628 |pmid=24777449 |doi=10.1038/ng.2966|issue=6|display-authors=etal}}</ref> (although the loss of Y may be an effect rather than a cause). And yet women, who have no Y chromosome, have lower rates of cancer. Male smokers have between 1.5 and 2 times the risk of non-respiratory cancers as female smokers.<ref>{{cite journal|author1=Andy Coghlan|title=Y men are more likely to get cancer than women|journal=New Scientist|date=13 December 2014|page=17|url=https://www.newscientist.com/article/mg22429995.800-y-men-are-more-likely-to-get-cancer-than-women.html}}</ref><ref>{{cite journal|author1=Jan P. Dumanski|title=Smoking is associated with mosaic loss of chromosome Y|journal=Science|date=December 2014 |pmid=25477213 |doi=10.1126/science.1262092|volume=347|issue=6217|pages=81–3|display-authors=etal|pmc=4356728|bibcode=2015Sci...347...81D}}</ref>


===Non-combining region of Y (NRY)===
===Non-combining region of Y (NRY)===
The human Y chromosome is normally unable to recombine with the X chromosome, except for small pieces of [[pseudoautosomal region]]s at the [[telomere]]s (which comprise about 5% of the chromosome's length).  These regions are relics of ancient [[Homology (biology)|homology]] between the X and Y chromosomes. The bulk of the Y chromosome, which does not recombine, is called the "NRY", or non-recombining region of the Y chromosome.<ref>[http://www.sciencedaily.com/releases/2008/04/080401184955.htm ''Science Daily]'', Apr. 3, 2008.</ref> The [[single-nucleotide polymorphism]]s (SNPs) in this region are used to trace direct paternal ancestral lines. For details, see [[human Y-chromosome DNA haplogroup]].
{{Further|Human Y-chromosome DNA haplogroup}}
The human Y chromosome is normally unable to recombine with the X chromosome, except for small pieces of [[pseudoautosomal region]]s at the [[telomere]]s (which comprise about 5% of the chromosome's length).  These regions are relics of ancient [[Homology (biology)|homology]] between the X and Y chromosomes. The bulk of the Y chromosome, which does not recombine, is called the "NRY", or non-recombining region of the Y chromosome.<ref>[https://www.sciencedaily.com/releases/2008/04/080401184955.htm ''Science Daily'']'', Apr. 3, 2008.''</ref> The [[single-nucleotide polymorphism]]s (SNPs) in this region are used to trace direct paternal ancestral lines.


===Genes===
===Genes===
{{Category see also|Genes on human chromosome Y}}
==== Number of genes ====
The following are some of the gene count estimates of human Y chromosome. Because researchers use different approaches to [[genome annotation]] their predictions of the [[number of genes]] on each chromosome varies (for technical details, see [[gene prediction]]). Among various projects, the collaborative consensus coding sequence project ([[Consensus CDS Project|CCDS]]) takes an extremely conservative strategy. So CCDS's gene number prediction represents a lower bound on the total number of human protein-coding genes.<ref name="pmid20441615">{{cite journal| author=Pertea M, Salzberg SL| title=Between a chicken and a grape: estimating the number of human genes. | journal=Genome Biol | year= 2010 | volume= 11 | issue= 5 | pages= 206 | pmid=20441615 | doi=10.1186/gb-2010-11-5-206 | pmc=2898077 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=20441615  }}</ref>
The following are some of the gene count estimates of human Y chromosome. Because researchers use different approaches to [[genome annotation]] their predictions of the [[number of genes]] on each chromosome varies (for technical details, see [[gene prediction]]). Among various projects, the collaborative consensus coding sequence project ([[Consensus CDS Project|CCDS]]) takes an extremely conservative strategy. So CCDS's gene number prediction represents a lower bound on the total number of human protein-coding genes.<ref name="pmid20441615">{{cite journal| author=Pertea M, Salzberg SL| title=Between a chicken and a grape: estimating the number of human genes. | journal=Genome Biol | year= 2010 | volume= 11 | issue= 5 | pages= 206 | pmid=20441615 | doi=10.1186/gb-2010-11-5-206 | pmc=2898077 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=20441615  }}</ref>


{| class="wikitable" style="text-align:right"
{| class="wikitable" style="text-align:right"
| Estimated by || [[Protein-coding genes]] || [[Non-coding RNA|Non-coding RNA gene]]s || [[Pseudogene]]s || Source || Release date
|-
|-
| [[Consensus CDS Project|CCDS]] || 63 || - || -
! Estimated by
|style="text-align:center"| <ref name="CCDS">{{cite web | title=Search results - Y&#91;CHR&#93; AND "Homo sapiens"&#91;Organism&#93; AND ("has ccds"&#91;Properties&#93; AND alive&#91;prop&#93;)  - Gene | website= NCBI |version = CCDS Release 20 for ''Homo sapiens'' | url=https://www.ncbi.nlm.nih.gov/gene?term=Y%5BChr%5D%20AND%20%22Homo%20sapiens%22%5BOrganism%5D%20AND%20%28%22has%20ccds%22%5BProperties%5D%20AND%20alive%5Bprop%5D%29&cmd=DetailsSearch |date=2016-09-08 | accessdate=2017-05-28}}</ref>
! [[Protein-coding genes]]
! [[Non-coding RNA|Non-coding RNA gene]]s
! [[Pseudogene]]s
! Source
! Release date
|-
| [[Consensus CDS Project|CCDS]] || 63 || ||
|style="text-align:center"| <ref name="CCDS">{{cite web | title=Search results - Y&#91;CHR&#93; AND "Homo sapiens"&#91;Organism&#93; AND ("has ccds"&#91;Properties&#93; AND alive&#91;prop&#93;)  - Gene |version = CCDS Release 20 for ''Homo sapiens'' | url=https://www.ncbi.nlm.nih.gov/gene?term=Y%5BChr%5D%20AND%20%22Homo%20sapiens%22%5BOrganism%5D%20AND%20%28%22has%20ccds%22%5BProperties%5D%20AND%20alive%5Bprop%5D%29&cmd=DetailsSearch |date=2016-09-08 | accessdate=2017-05-28}}</ref>
| 2016-09-08  
| 2016-09-08  
|-
|-
| [[HUGO Gene Nomenclature Committee|HGNC]]|| 45 || 55 || 381
| [[HUGO Gene Nomenclature Committee|HGNC]]|| 45 || 55 || 381
|style="text-align:center"| <ref name="HGNC20170512">{{cite web | title=Statistics & Downloads for chromosome Y | website=HUGO Gene Nomenclature Committee | url=http://www.genenames.org/cgi-bin/statistics?c=Y  |date=2017-05-12 | accessdate=2017-05-19}}</ref>
|style="text-align:center"| <ref name="HGNC20170512">{{cite web | title=Statistics & Downloads for chromosome Y | website=HUGO Gene Nomenclature Committee | url=https://www.genenames.org/cgi-bin/statistics?c=Y  |date=2017-05-12 | accessdate=2017-05-19}}</ref>
| 2017-05-12  
| 2017-05-12  
|-
|-
Line 120: Line 129:
|style="text-align:center"| <ref name="Ensembl Release 88">{{cite web | title=Chromosome Y: Chromosome summary - Homo sapiens | website= Ensembl Release 88 | url=http://mar2017.archive.ensembl.org/Homo_sapiens/Location/Chromosome?r=Y |date=2017-03-29 | accessdate=2017-05-19}}</ref>
|style="text-align:center"| <ref name="Ensembl Release 88">{{cite web | title=Chromosome Y: Chromosome summary - Homo sapiens | website= Ensembl Release 88 | url=http://mar2017.archive.ensembl.org/Homo_sapiens/Location/Chromosome?r=Y |date=2017-03-29 | accessdate=2017-05-19}}</ref>
| 2017-03-29  
| 2017-03-29  
|-
| [[UniProt]] || 47 || — || —
|style="text-align:center"| <ref name="UniProt">{{cite web | title=Human chromosome Y: entries, gene names and cross-references to MIM | website= UniProt | url=https://www.uniprot.org/docs/humchry.txt |date=2018-02-28 | accessdate=2018-03-16}}</ref>
| 2018-02-28
|-
|-
| [[National Center for Biotechnology Information|NCBI]] || 73 || 122 || 400
| [[National Center for Biotechnology Information|NCBI]] || 73 || 122 || 400
|style="text-align:center"| <ref name="NCBI coding">{{cite web | title=Search results - Y&#91;CHR&#93; AND "Homo sapiens"&#91;Organism&#93; AND ("genetype protein coding"&#91;Properties&#93; AND alive&#91;prop&#93;)  - Gene | website=NCBI | date=2017-05-19 | url=https://www.ncbi.nlm.nih.gov/gene?term=Y%5BCHR%5D%20AND%20%22Homo%20sapiens%22%5BOrganism%5D%20AND%20%28%22genetype%20protein%20coding%22%5BProperties%5D%20AND%20alive%5Bprop%5D%29&cmd=DetailsSearch | accessdate=2017-05-20}}</ref><ref name="NCBI noncoding">{{cite web | title=Search results - Y&#91;CHR&#93; AND "Homo sapiens"&#91;Organism&#93; AND ( ("genetype miscrna"&#91;Properties&#93; OR "genetype ncrna"&#91;Properties&#93; OR "genetype rrna"&#91;Properties&#93; OR "genetype trna"&#91;Properties&#93; OR "genetype scrna"&#91;Properties&#93; OR "genetype snrna"&#91;Properties&#93; OR "genetype snorna"&#91;Properties&#93;) NOT "genetype protein coding"&#91;Properties&#93; AND alive&#91;prop&#93;) - Gene | website=NCBI | date=2017-05-19 | url=https://www.ncbi.nlm.nih.gov/gene?term=Y%5BCHR%5D%20AND%20%22Homo%20sapiens%22%5BOrganism%5D%20AND%20%28%28%22genetype%20miscrna%22%5BProperties%5D%20OR%20%22genetype%20ncrna%22%5BProperties%5D%20OR%20%22genetype%20rrna%22%5BProperties%5D%20OR%20%22genetype%20trna%22%5BProperties%5D%20OR%20%22genetype%20scrna%22%5BProperties%5D%20OR%20%22genetype%20snrna%22%5BProperties%5D%20OR%20%22genetype%20snorna%22%5BProperties%5D%29%20NOT%20%22genetype%20protein%20coding%22%5BProperties%5D%20AND%20alive%5Bprop%5D%29&cmd=DetailsSearch | accessdate=2017-05-20}}</ref><ref name="NCBI pseudo">{{cite web | title=Search results - Y&#91;CHR&#93; AND "Homo sapiens"&#91;Organism&#93; AND ("genetype pseudo"&#91;Properties&#93; AND alive&#91;prop&#93;)  - Gene | website=NCBI | date=2017-05-19 | url=https://www.ncbi.nlm.nih.gov/gene?term=Y%5BCHR%5D%20AND%20%22Homo%20sapiens%22%5BOrganism%5D%20AND%20%28%22genetype%20pseudo%22%5BProperties%5D%20AND%20alive%5Bprop%5D%29&cmd=DetailsSearch | accessdate=2017-05-20}}</ref>
|style="text-align:center"| <ref name="NCBI coding">{{cite web | title=Search results - Y&#91;CHR&#93; AND "Homo sapiens"&#91;Organism&#93; AND ("genetype protein coding"&#91;Properties&#93; AND alive&#91;prop&#93;)  - Gene | date=2017-05-19 | url=https://www.ncbi.nlm.nih.gov/gene?term=Y%5BCHR%5D%20AND%20%22Homo%20sapiens%22%5BOrganism%5D%20AND%20%28%22genetype%20protein%20coding%22%5BProperties%5D%20AND%20alive%5Bprop%5D%29&cmd=DetailsSearch | accessdate=2017-05-20}}</ref><ref name="NCBI noncoding">{{cite web | title=Search results - Y&#91;CHR&#93; AND "Homo sapiens"&#91;Organism&#93; AND ( ("genetype miscrna"&#91;Properties&#93; OR "genetype ncrna"&#91;Properties&#93; OR "genetype rrna"&#91;Properties&#93; OR "genetype trna"&#91;Properties&#93; OR "genetype scrna"&#91;Properties&#93; OR "genetype snrna"&#91;Properties&#93; OR "genetype snorna"&#91;Properties&#93;) NOT "genetype protein coding"&#91;Properties&#93; AND alive&#91;prop&#93;) - Gene | date=2017-05-19 | url=https://www.ncbi.nlm.nih.gov/gene?term=Y%5BCHR%5D%20AND%20%22Homo%20sapiens%22%5BOrganism%5D%20AND%20%28%28%22genetype%20miscrna%22%5BProperties%5D%20OR%20%22genetype%20ncrna%22%5BProperties%5D%20OR%20%22genetype%20rrna%22%5BProperties%5D%20OR%20%22genetype%20trna%22%5BProperties%5D%20OR%20%22genetype%20scrna%22%5BProperties%5D%20OR%20%22genetype%20snrna%22%5BProperties%5D%20OR%20%22genetype%20snorna%22%5BProperties%5D%29%20NOT%20%22genetype%20protein%20coding%22%5BProperties%5D%20AND%20alive%5Bprop%5D%29&cmd=DetailsSearch | accessdate=2017-05-20}}</ref><ref name="NCBI pseudo">{{cite web | title=Search results - Y&#91;CHR&#93; AND "Homo sapiens"&#91;Organism&#93; AND ("genetype pseudo"&#91;Properties&#93; AND alive&#91;prop&#93;)  - Gene | date=2017-05-19 | url=https://www.ncbi.nlm.nih.gov/gene?term=Y%5BCHR%5D%20AND%20%22Homo%20sapiens%22%5BOrganism%5D%20AND%20%28%22genetype%20pseudo%22%5BProperties%5D%20AND%20alive%5Bprop%5D%29&cmd=DetailsSearch | accessdate=2017-05-20}}</ref>
| 2017-05-19  
| 2017-05-19  
|}
|}


In general, the human Y chromosome is extremely gene poor—it is one of the largest [[Gene Deserts|gene deserts]] in the human genome, however there are several notable genes coded on the Y chromosome: not including [[Pseudoautosomal region|pseudoautosomal]] genes, genes encoded on the human Y chromosome include:
==== Gene list ====
{{Category see also|Genes on human chromosome Y}}
In general, the human Y chromosome is extremely gene poor—it is one of the largest [[Gene Deserts|gene deserts]] in the human genome. Disregarding [[Pseudoautosomal region|pseudoautosomal]] genes, genes encoded on the human Y chromosome include:


* NRY, with corresponding gene on [[X chromosome]]
* NRY, with corresponding gene on [[X chromosome]]
**[[AMELY]]/[[AMELX]] ([[amelogenin]])
**[[AMELY]]/[[AMELX]] ([[amelogenin]])
**[[RPS4Y1]]/[[RPS4Y2]]/[[RPS4X]] (Ribosomal protein S4)
**[[RPS4Y1]]/[[RPS4Y2]]/[[RPS4X]] (Ribosomal protein S4)
** X-transposed region (XTR),<!-- 10.1038/nature01722 lists the genes, but smells more primary --><ref>{{cite journal|last1=Bachtrog|first1=Doris|title=Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration|journal=Nature Reviews Genetics|date=18 January 2013|volume=14|issue=2|pages=113–124|doi=10.1038/nrg3366|url=https://www.nature.com/nrg/journal/v14/n2/box/nrg3366_BX1.html}}</ref> once dubbed "PAR3"<ref name="Veerappa 2013 285–293">{{cite journal|last=Veerappa|first=Avinash|author2=Ramachandra NB |author3=Prakash Padakannaya |title=Copy number variation-based polymorphism in a new pseudoautosomal region 3 (PAR3) of a human X-chromosome-transposed region (XTR) in the Y chromosome|journal=Functional and Integrative Genomics|date=August 2013|volume=13|issue=3|pages=285–293|doi=10.1007/s10142-013-0323-6|pmid=23708688|url=https://link.springer.com/article/10.1007%2Fs10142-013-0323-6}}</ref><ref>{{cite journal|last=Veerappa|first=Avinash|author2=Ramachandra NB |author3=Padakannaya P |title=Copy number variation-based polymorphism in a new pseudoautosomal region 3 (PAR3) of a human X-chromosome-transposed region (XTR) in the Y chromosome.|journal=Functional & Integrative Genomics|date=August 2013|volume=13|issue=3|pages=285–293|doi=10.1007/s10142-013-0323-6|pmid=23708688}}</ref> but later refuted<ref>{{cite journal|last1=Raudsepp|first1=Terje|last2=Chowdhary|first2=Bhanu P.|title=The Eutherian Pseudoautosomal Region|journal=Cytogenetic and Genome Research|date=6 January 2016|volume=147|issue=2-3|pages=81–94|doi=10.1159/000443157}}</ref>
**[[DDX3Y]] (helicase)
** X-transposed region (XTR),<!-- 10.1038/nature01722 lists the genes, but smells more primary --><ref>{{cite journal|last1=Bachtrog|first1=Doris|title=Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration|journal=Nature Reviews Genetics|date=18 January 2013|volume=14|issue=2|pages=113–124|doi=10.1038/nrg3366|url=https://www.nature.com/nrg/journal/v14/n2/box/nrg3366_BX1.html|pmc=4120474}}</ref> once dubbed "PAR3"<ref name="Veerappa 2013 285–293">{{cite journal|last=Veerappa|first=Avinash|author2=Ramachandra NB |author3=Prakash Padakannaya |title=Copy number variation-based polymorphism in a new pseudoautosomal region 3 (PAR3) of a human X-chromosome-transposed region (XTR) in the Y chromosome|journal=Functional and Integrative Genomics|date=August 2013|volume=13|issue=3|pages=285–293|doi=10.1007/s10142-013-0323-6|pmid=23708688|url=https://link.springer.com/article/10.1007%2Fs10142-013-0323-6}}</ref><ref>{{cite journal|last=Veerappa|first=Avinash|author2=Ramachandra NB |author3=Padakannaya P |title=Copy number variation-based polymorphism in a new pseudoautosomal region 3 (PAR3) of a human X-chromosome-transposed region (XTR) in the Y chromosome.|journal=Functional & Integrative Genomics|date=August 2013|volume=13|issue=3|pages=285–293|doi=10.1007/s10142-013-0323-6|pmid=23708688}}</ref> but later refuted<ref>{{cite journal|last1=Raudsepp|first1=Terje|last2=Chowdhary|first2=Bhanu P.|title=The Eutherian Pseudoautosomal Region|journal=Cytogenetic and Genome Research|date=6 January 2016|volume=147|issue=2-3|pages=81–94|doi=10.1159/000443157}}</ref>
*** [[PCDH11Y]] ([[PCDH11X]])
*** [[PCDH11Y]] ([[PCDH11X]])
*** [[TGIF2LY]] ([[TGIF2LX]])
*** [[TGIF2LY]] ([[TGIF2LX]])
Line 139: Line 155:
**[[DAZ1]] (deleted in azoospermia)
**[[DAZ1]] (deleted in azoospermia)
**[[DAZ2]]
**[[DAZ2]]
**[[DDX3Y]] (helicase)
**[[DFNY1]] encoding [[protein]] Deafness, Y-linked 1
**[[DFNY1]] encoding [[protein]] Deafness, Y-linked 1
**[[PRKY]] (protein kinase, Y-linked)
**[[PRKY]] (protein kinase, Y-linked)
Line 150: Line 165:


===Y-chromosome-linked diseases===
===Y-chromosome-linked diseases===
Diseases linked to Y chromosome can be of more common types or very rare ones. Yet, the rare ones still have importance in understanding the function of the Y chromosome in the normal case.
Diseases linked to the Y chromosome typically involve an [[aneuploidy]], an atypical number of chromosomes.
 
====More common====
No vital genes reside only on the Y chromosome, since roughly half of humans (females) do not have a Y chromosome. The only well-defined human disease linked to a defect on the Y chromosome is defective testicular development (due to deletion or deleterious mutation of ''SRY''). However, having two X chromosomes and one Y chromosome has similar effects. On the other hand, having Y chromosome [[polysomy]] has other effects than masculinization.


=====Y chromosome microdeletion=====
==== Y chromosome microdeletion ====
[[Y chromosome microdeletion]] (YCM) is a family of genetic disorders caused by missing genes in the Y chromosome. Many affected men exhibit no symptoms and lead normal lives.  However, YCM is also known to be present in a significant number of men with reduced fertility or reduced sperm count.
[[Y chromosome microdeletion]] (YCM) is a family of genetic disorders caused by missing genes in the Y chromosome. Many affected men exhibit no symptoms and lead normal lives.  However, YCM is also known to be present in a significant number of men with reduced fertility or reduced sperm count.{{Citation needed|date=October 2018}}


=====Defective Y chromosome=====
==== Defective Y chromosome ====
This results in the person presenting a female [[phenotype]] (i.e., is born with female-like genitalia) even though that person possesses an XY [[karyotype]]. The lack of the second X results in infertility. In other words, viewed from the opposite direction, the person goes through [[defeminization]] but fails to complete [[masculinization]].
This results in the person presenting a female [[phenotype]] (i.e., is born with female-like genitalia) even though that person possesses an XY [[karyotype]]. The lack of the second X results in infertility. In other words, viewed from the opposite direction, the person goes through [[defeminization]] but fails to complete [[Virilization|masculinization]].{{Citation needed|date=October 2018}}


The cause can be seen as an incomplete Y chromosome: the usual karyotype in these cases is 45X, plus a fragment of Y. This usually results in defective testicular development, such that the infant may or may not have fully formed male genitalia internally or externally. The full range of ambiguity of structure may occur, especially if [[mosaicism]] is present. When the Y fragment is minimal and nonfunctional, the child is usually a girl with the features of [[Turner syndrome]] or [[mixed gonadal dysgenesis]].
The cause can be seen as an incomplete Y chromosome: the usual karyotype in these cases is 45X, plus a fragment of Y. This usually results in defective testicular development, such that the infant may or may not have fully formed male genitalia internally or externally. The full range of ambiguity of structure may occur, especially if [[Mosaic (genetics)|mosaicism]] is present. When the Y fragment is minimal and nonfunctional, the child is usually a girl with the features of [[Turner syndrome]] or [[mixed gonadal dysgenesis]].{{Citation needed|date=October 2018}}


=====XXY=====
==== XXY ====
{{main article|Klinefelter syndrome}}
{{main|Klinefelter syndrome}}


Klinefelter syndrome (47, XXY) is not an [[aneuploidy]] of the Y chromosome, but a condition of having an extra X chromosome, which usually results in defective postnatal testicular function.  The mechanism is not fully understood; it does not seem to be due to direct interference by the extra X with expression of Y genes.
Klinefelter syndrome (47, XXY) is not an [[aneuploidy]] of the Y chromosome, but a condition of having an extra X chromosome, which usually results in defective postnatal testicular function.  The mechanism is not fully understood; it does not seem to be due to direct interference by the extra X with expression of Y genes.{{Citation needed|date=October 2018}}


=====XYY=====
==== XYY ====
{{main article|XYY syndrome}}
{{main|XYY syndrome}}


47, XYY syndrome (simply known as XYY syndrome) is caused by the presence of a single extra copy of the Y chromosome in each of a male's cells. 47, XYY males have one X chromosome and two Y chromosomes, for a total of 47 chromosomes per cell. Researchers have found that an extra copy of the Y chromosome is associated with increased stature and an increased incidence of learning problems in some boys and men, but the effects are variable, often minimal, and the vast majority do not know their karyotype.
47, XYY syndrome (simply known as XYY syndrome) is caused by the presence of a single extra copy of the Y chromosome in each of a male's cells. 47, XYY males have one X chromosome and two Y chromosomes, for a total of 47 chromosomes per cell. Researchers have found that an extra copy of the Y chromosome is associated with increased stature and an increased incidence of learning problems in some boys and men, but the effects are variable, often minimal, and the vast majority do not know their karyotype.<ref name="1950- 2007">{{Cite book|url=https://www.worldcat.org/oclc/72774424|title=Thompson & Thompson genetics in medicine.|last=1950-|first=Nussbaum, Robert L.,|date=2007|publisher=Saunders/Elsevier|others=McInnes, Roderick R., Willard, Huntington F., Hamosh, Ada., Thompson, Margaret W. (Margaret Wilson), 1920-|isbn=1416030808|edition= 7th.|location=Philadelphia|oclc=72774424}}</ref>


In 1965 and 1966 [[Patricia Jacobs]] and colleagues published a chromosome survey of 315 male patients at
In 1965 and 1966 [[Patricia Jacobs]] and colleagues published a chromosome survey of 315 male patients at
Line 177: Line 189:
finding a higher than expected number of patients to have an extra Y chromosome.<ref name="jacobs-1965">{{cite journal |author1=Jacobs, Patricia A. |author2=Brunton, Muriel |author3=Melville, Marie M. |author4=Brittain, Robert P. |author5=McClemont, William F. |date=December 25, 1965 |title=Aggressive behavior, mental sub-normality and the XYY male |journal=[[Nature (journal)|Nature]] |volume=208 |issue=5017 |pages=1351–2 |url=http://www.nature.com/nature/journal/v208/n5017/abs/2081351a0.html |doi=10.1038/2081351a0 |pmid=5870205}}</ref> The authors of this study wondered "whether an extra Y chromosome predisposes its carriers to unusually aggressive behaviour", and this conjecture "framed the next fifteen years of research on the human Y chromosome".<ref name="richardson-sex-itself">{{cite book|last1=Richardson|first1=Sarah S.|title=Sex Itself: The Search for Male & Female in the Human Genome|date=2013|publisher=U. of Chicago Press|location=Chicago|isbn=978-0-226-08468-8|page=84}}</ref>
finding a higher than expected number of patients to have an extra Y chromosome.<ref name="jacobs-1965">{{cite journal |author1=Jacobs, Patricia A. |author2=Brunton, Muriel |author3=Melville, Marie M. |author4=Brittain, Robert P. |author5=McClemont, William F. |date=December 25, 1965 |title=Aggressive behavior, mental sub-normality and the XYY male |journal=[[Nature (journal)|Nature]] |volume=208 |issue=5017 |pages=1351–2 |url=http://www.nature.com/nature/journal/v208/n5017/abs/2081351a0.html |doi=10.1038/2081351a0 |pmid=5870205}}</ref> The authors of this study wondered "whether an extra Y chromosome predisposes its carriers to unusually aggressive behaviour", and this conjecture "framed the next fifteen years of research on the human Y chromosome".<ref name="richardson-sex-itself">{{cite book|last1=Richardson|first1=Sarah S.|title=Sex Itself: The Search for Male & Female in the Human Genome|date=2013|publisher=U. of Chicago Press|location=Chicago|isbn=978-0-226-08468-8|page=84}}</ref>


Through studies over the next decade, this conjecture was shown to be incorrect: the elevated crime rate of XYY males is due to lower median intelligence and not increased aggression,<ref name="witkin-1976">{{cite journal |author1=Witkin, H.A. et al. |date=13 August 1976 |title=Criminality in XYY and XXY men |journal=Science |volume=193 |issue=4253 |pages=547–555 |doi=10.1126/science.959813 |pmid=959813}}</ref> and increased height was the only characteristic that could be reliably associated with XYY males.<ref name="witkin-1977">{{cite journal |author1=Witkin, Herman A. |author2=Goodenough, Donald R. |author3=Hirschhorn, Kurt |date=1977 |title=XYY Men: Are They Criminally Aggressive? |journal=The Sciences |volume=17 |issue=6 |pages=10–13 |doi=10.1002/j.2326-1951.1977.tb01570.x}}</ref>  The "criminal karyotype" concept is therefore inaccurate.
Through studies over the next decade, this conjecture was shown to be incorrect: the elevated crime rate of XYY males is due to lower median intelligence and not increased aggression,<ref name="witkin-1976">{{cite journal | vauthors = Witkin HA, Mednick SA, Schulsinger F, Bakkestrom E, Christiansen KO, Goodenough DR, Hirschhorn K, Lundsteen C, Owen DR, Philip J, Rubin DB, Stocking M | title = Criminality in XYY and XXY men | journal = Science | volume = 193 | issue = 4253 | pages = 547–55 | date = August 1976 | pmid = 959813 | doi = 10.1126/science.959813| bibcode = 1976Sci...193..547W }}</ref> and increased height was the only characteristic that could be reliably associated with XYY males.<ref name="witkin-1977">{{cite journal |author1=Witkin, Herman A. |author2=Goodenough, Donald R. |author3=Hirschhorn, Kurt |date=1977 |title=XYY Men: Are They Criminally Aggressive? |journal=The Sciences |volume=17 |issue=6 |pages=10–13 |doi=10.1002/j.2326-1951.1977.tb01570.x}}</ref>  The "criminal karyotype" concept is therefore inaccurate.<ref name="1950- 2007"/>


====Rare====
====Rare====
Line 183: Line 195:


=====More than two Y chromosomes=====
=====More than two Y chromosomes=====
Greater degrees of Y chromosome polysomy (having more than one extra copy of the Y chromosome in every cell, e.g., XYYY) are rare. The extra genetic material in these cases can lead to skeletal abnormalities, decreased IQ, and delayed development, but the severity features of these conditions are variable.
Greater degrees of Y chromosome polysomy (having more than one extra copy of the Y chromosome in every cell, e.g., XYYY) are rare. The extra genetic material in these cases can lead to skeletal abnormalities, decreased IQ, and delayed development, but the severity features of these conditions are variable.{{Citation needed|date=October 2018}}


=====XX male syndrome=====
=====XX male syndrome=====
[[XX male syndrome]] occurs when there has been a [[Genetic recombination|recombination]] in the formation of the male [[gamete]]s, causing the [[SRY]] portion of the Y chromosome to move to the X chromosome. When such an X chromosome contributes to the child, the development will lead to a male, because of the SRY gene.
[[XX male syndrome]] occurs when there has been a [[Genetic recombination|recombination]] in the formation of the male [[gamete]]s, causing the [[SRY]] portion of the Y chromosome to move to the X chromosome. When such an X chromosome contributes to the child, the development will lead to a male, because of the SRY gene.{{Citation needed|date=October 2018}}


=== Genetic genealogy ===
=== Genetic genealogy ===
{{Main article|Human Y-chromosome DNA haplogroup|Y-chromosomal Adam}}
{{Main|Human Y-chromosome DNA haplogroup|Y-chromosomal Adam}}


In human [[genetic genealogy]] (the application of [[genetics]] to [[Genealogy|traditional genealogy]]), use of the information contained in the Y chromosome is of particular interest because, unlike other chromosomes, the Y chromosome is passed exclusively from father to son, on the patrilineal line. [[Mitochondrial DNA]], maternally inherited to both sons and daughters, is used in an analogous way to trace the matrilineal line.
In human [[genetic genealogy]] (the application of [[genetics]] to [[Genealogy|traditional genealogy]]), use of the information contained in the Y chromosome is of particular interest because, unlike other chromosomes, the Y chromosome is passed exclusively from father to son, on the patrilineal line. [[Mitochondrial DNA]], maternally inherited to both sons and daughters, is used in an analogous way to trace the matrilineal line.{{Citation needed|date=October 2018}}


===Brain function===
===Brain function===
Line 197: Line 209:


===Microchimerism===
===Microchimerism===
The presence of male chromosomes in fetal cells in the blood circulation of women was discovered in 1974.<ref name="SchroederEtAl1974">{{cite journal | author = Schröder Jim, Thlikainen Anja, de la Chapelle A | year = 1974 | title = Fetal leukocytes in the maternal circulation after delivery: Cytological aspects | url = | journal = Transplantation | volume = 17 | issue = 4| pages = 346–354 | doi = 10.1097/00007890-197404000-00003 }}</ref>
The presence of male chromosomes in fetal cells in the blood circulation of women was discovered in 1974.<ref name="SchroederEtAl1974">{{cite journal|vauthors = Schröder J, Thlikainen A, de la Chapelle A|title=Fetal leukocytes in the maternal circulation after delivery: Cytological aspects|journal=Transplantation|volume=17|issue=4|year=1974|pages=346–354|issn=0041-1337|doi=10.1097/00007890-197404000-00003}}</ref>
In 1996, it was found that male fetal progenitor cells could persist postpartum in the maternal blood stream for as long as 27 years.<ref name="BianchiEtAl1996">{{cite journal |author1=Bianchi D. W. |author2=Zickwolf G. K. |author3=Weil G. J. |author4=Sylvester S. |author5=DeMaria M. A. | year = 1996 | title = Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum | url = | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 93 | issue = 2| pages = 705–708 | doi=10.1073/pnas.93.2.705 | pmid=8570620 | pmc=40117}}</ref>
 
In 1996, it was found that male fetal progenitor cells could persist postpartum in the maternal blood stream for as long as 27 years.<ref name="BianchiEtAl1996">{{cite journal |author1=Bianchi D. W. |author2=Zickwolf G. K. |author3=Weil G. J. |author4=Sylvester S. |author5=DeMaria M. A. | year = 1996 | title = Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum | url = | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 93 | issue = 2| pages = 705–708 | doi=10.1073/pnas.93.2.705 | pmid=8570620 | pmc=40117|bibcode=1996PNAS...93..705B }}</ref>


A 2004 study at the [[Fred Hutchinson Cancer Research Center]], Seattle, investigated the origin of male chromosomes found in the peripheral blood of women who had not had male progeny. A total of 120 subjects (women who had never had sons) were investigated, and it was found that 21% of them had male DNA. The subjects were categorised into four groups based on their case histories:<ref name="YanEtAl2004">{{cite journal|title=Male microchimerism in women without sons: Quantitative assessment and correlation with pregnancy history|url=http://www.amjmed.com/article/S0002-9343(05)00270-6/fulltext|author=Yan, Zhen|author2=Lambert, Nathalie C.|author3=Guthrie, Katherine A.|author4=Porter, Allison J.|author5=Loubiere, Laurence S.|author6=Madeleine, Margaret M.|author7=Stevens, Anne M.|author8=Hermes, Heidi M.|author9=Nelson, J. Lee|last-author-amp=yes|journal =The American Journal of Medicine|volume=118| issue=8|pages=899–906 |doi=10.1016/j.amjmed.2005.03.037 |format=full text |accessdate=24 December 2014 |pmid=16084184 |year=2005}}</ref>
A 2004 study at the [[Fred Hutchinson Cancer Research Center]], Seattle, investigated the origin of male chromosomes found in the peripheral blood of women who had not had male progeny. A total of 120 subjects (women who had never had sons) were investigated, and it was found that 21% of them had male DNA. The subjects were categorised into four groups based on their case histories:<ref name="YanEtAl2004">{{cite journal|title=Male microchimerism in women without sons: Quantitative assessment and correlation with pregnancy history|url=http://www.amjmed.com/article/S0002-9343(05)00270-6/fulltext|author=Yan, Zhen|author2=Lambert, Nathalie C.|author3=Guthrie, Katherine A.|author4=Porter, Allison J.|author5=Loubiere, Laurence S.|author6=Madeleine, Margaret M.|author7=Stevens, Anne M.|author8=Hermes, Heidi M.|author9=Nelson, J. Lee|last-author-amp=yes|journal =The American Journal of Medicine|volume=118| issue=8|pages=899–906 |doi=10.1016/j.amjmed.2005.03.037 |format=full text |accessdate=24 December 2014 |pmid=16084184 |year=2005}}</ref>
Line 212: Line 225:
* possibly from sexual intercourse.
* possibly from sexual intercourse.


A 2012 study at the same institute has detected cells with the Y chromosome in multiple areas of the brains of deceased women.<ref name="ChanEtAl2012">{{cite journal|title=Male microchimerism in the human female brain|url=http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0045592|journal=PLOS ONE|date=26 September 2012|volume=7|issue=9|doi= 10.1371/journal.pone.0045592|author=Chan W. F. N.|author2=Gurnot C.|author3=Montine T. J.|author4=Sonnen J. A.|author5=Guthrie K. A.|author6=J. Lee Nelson |accessdate=24 December 2014|pages=e45592|pmid=23049819|pmc=3458919}}</ref>
A 2012 study at the same institute has detected cells with the Y chromosome in multiple areas of the brains of deceased women.<ref name="ChanEtAl2012">{{cite journal|title=Male microchimerism in the human female brain|url=http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0045592|journal=PLOS ONE|date=26 September 2012|volume=7|issue=9|doi= 10.1371/journal.pone.0045592|author=Chan W. F. N.|author2=Gurnot C.|author3=Montine T. J.|author4=Sonnen J. A.|author5=Guthrie K. A.|author6=J. Lee Nelson |accessdate=24 December 2014|pages=e45592|pmid=23049819|pmc=3458919|bibcode=2012PLoSO...745592C}}</ref>


===Cytogenetic band===
===Cytogenetic band===
Line 225: Line 238:
  | width2 = 1003
  | width2 = 1003
  | height2= 2801
  | height2= 2801
  | caption2 = G-banding patterns of human Y chromosome in three different resolutions (400,<ref name="400bphs">Genome Decoration Page, NCBI. [ftp://ftp.ncbi.nlm.nih.gov/pub/gdp/ideogram_9606_GCF_000001305.14_400_V1 Ideogram data for Homo sapience (400 bphs, Assembly GRCh38.p3)]. Last update 2014-03-04. Retrieved 2017-04-26.</ref> 550<ref name="550bphs">Genome Decoration Page, NCBI.  [ftp://ftp.ncbi.nlm.nih.gov/pub/gdp/ideogram_9606_GCF_000001305.14_550_V1 Ideogram data for Homo sapience (550 bphs, Assembly GRCh38.p3)]. Last update 2015-08-11. Retrieved 2017-04-26.</ref> and 850<ref name="850bphs">Genome Decoration Page, NCBI.  [ftp://ftp.ncbi.nlm.nih.gov/pub/gdp/ideogram_9606_GCF_000001305.14_850_V1 Ideogram data for Homo sapience (850 bphs, Assembly GRCh38.p3)]. Last update 2014-06-03. Retrieved 2017-04-26.</ref>). Band length in this diagram is based on the ideograms from ISCN (2013).<ref name="Nomenclature2013">{{cite book|author=International Standing Committee on Human Cytogenetic Nomenclature|title=ISCN 2013: An International System for Human Cytogenetic Nomenclature (2013)|url=https://books.google.com/books?id=lGCLrh0DIwEC|year=2013|publisher=Karger Medical and Scientific Publishers|isbn=978-3-318-02253-7}}</ref> This type of ideogram represents actual relative band length observed under a microscope at the different moments during the [[Mitosis|mitotic process]].<ref name="SethakulvichaiManitpornsut2012">{{cite journal|last1=Sethakulvichai|first1=W.|last2=Manitpornsut|first2=S.|last3=Wiboonrat|first3=M.|last4=Lilakiatsakun|first4=W.|last5=Assawamakin|first5=A.|last6=Tongsima|first6=S.|title=Estimation of band level resolutions of human chromosome images|year=2012|pages=276–282|journal=In Computer Science and Software Engineering (JCSSE), 2012 International Joint Conference on|doi=10.1109/JCSSE.2012.6261965|url=https://www.researchgate.net/profile/Anunchai_Assawamakin/publication/261304470_Estimation_of_band_level_resolutions_of_human_chromosome_images/links/5459f7ff0cf2cf516483fffd/Estimation-of-band-level-resolutions-of-human-chromosome-images.pdf}}</ref>
  | caption2 = G-banding patterns of human Y chromosome in three different resolutions (400,<ref name="400bphs">Genome Decoration Page, NCBI. [ftp://ftp.ncbi.nlm.nih.gov/pub/gdp/ideogram_9606_GCF_000001305.14_400_V1 Ideogram data for Homo sapience (400 bphs, Assembly GRCh38.p3)]. Last update 2014-03-04. Retrieved 2017-04-26.</ref> 550<ref name="550bphs">Genome Decoration Page, NCBI.  [ftp://ftp.ncbi.nlm.nih.gov/pub/gdp/ideogram_9606_GCF_000001305.14_550_V1 Ideogram data for Homo sapience (550 bphs, Assembly GRCh38.p3)]. Last update 2015-08-11. Retrieved 2017-04-26.</ref> and 850<ref name="850bphs" />). Band length in this diagram is based on the ideograms from ISCN (2013).<ref name="Nomenclature2013">{{cite book|author=International Standing Committee on Human Cytogenetic Nomenclature|title=ISCN 2013: An International System for Human Cytogenetic Nomenclature (2013)|url=https://books.google.com/books?id=lGCLrh0DIwEC|year=2013|publisher=Karger Medical and Scientific Publishers|isbn=978-3-318-02253-7}}</ref> This type of ideogram represents actual relative band length observed under a microscope at the different moments during the [[Mitosis|mitotic process]].<ref name="SethakulvichaiManitpornsut2012">{{cite journal|last1=Sethakulvichai|first1=W.|last2=Manitpornsut|first2=S.|last3=Wiboonrat|first3=M.|last4=Lilakiatsakun|first4=W.|last5=Assawamakin|first5=A.|last6=Tongsima|first6=S.|title=Estimation of band level resolutions of human chromosome images|year=2012|pages=276–282|journal=In Computer Science and Software Engineering (JCSSE), 2012 International Joint Conference on|doi=10.1109/JCSSE.2012.6261965|url=https://www.researchgate.net/profile/Anunchai_Assawamakin/publication/261304470_Estimation_of_band_level_resolutions_of_human_chromosome_images/links/5459f7ff0cf2cf516483fffd/Estimation-of-band-level-resolutions-of-human-chromosome-images.pdf}}</ref>
}}
}}
{| class="wikitable" style="text-align:right"
{| class="wikitable" style="text-align:right"
Line 307: Line 320:
*http://www.ncbi.nlm.nih.gov/mapview/maps.cgi?taxid=9606&chr=Y
*http://www.ncbi.nlm.nih.gov/mapview/maps.cgi?taxid=9606&chr=Y
* [http://www.ornl.gov/sci/techresources/Human_Genome/faq/snps.shtml Human Genome Project Information]—Human Chromosome Y Launchpad
* [http://www.ornl.gov/sci/techresources/Human_Genome/faq/snps.shtml Human Genome Project Information]—Human Chromosome Y Launchpad
* [http://www.wi.mit.edu/news/ontopic/ychromosome.html On Topic: Y Chromosome]—From the Whitehead Institute for Biomedical Research
* [https://web.archive.org/web/20050207052351/http://wi.mit.edu/news/ontopic/ychromosome.html On Topic: Y Chromosome]—From the Whitehead Institute for Biomedical Research
* [http://www.nature.com/nature/focus/ychromosome/index.html Nature]—focus on the Y chromosome
* [http://www.nature.com/nature/focus/ychromosome/index.html Nature]—focus on the Y chromosome
* [http://www.genome.gov/11007628 National Human Genome Research Institute (NHGRI)]—Use of Novel Mechanism Preserves Y chromosome Genes
* [http://www.genome.gov/11007628 National Human Genome Research Institute (NHGRI)]—Use of Novel Mechanism Preserves Y chromosome Genes
* [http://www.ysearch.org/ Ysearch.org – Public Y-DNA database]
* [http://www.ysearch.org/ Ysearch.org – Public Y-DNA database]
* [http://ycc.biosci.arizona.edu/ Y chromosome Consortium (YCC)]
* [http://ycc.biosci.arizona.edu/ Y chromosome Consortium (YCC)]
* [http://www.npr.org/blogs/health/2010/01/human_male_still_a_work_in_pro.html NPR's Human Male: Still A Work In Progress]
* [https://www.npr.org/sections/health-shots/2010/01/human_male_still_a_work_in_pro.html NPR's Human Male: Still A Work In Progress]


{{Chromosomes}}
{{Chromosomes}}

Revision as of 00:09, 23 December 2018

Human Y chromosome
File:Human male karyotpe high resolution - Y chromosome cropped.png
Human Y chromosome (after G-banding)
File:Human male karyotpe high resolution - Chromosome Y.png
Y chromosome in human male karyogram
Features
Length (bp)57,227,415 bp
(GRCh38)[1]
No. of genes63 (CCDS)[2]
TypeAllosome
Centromere positionAcrocentric[3]
(10.4 Mbp[4])
Complete gene lists
CCDSGene list
HGNCGene list
UniProtGene list
NCBIGene list
External map viewers
EnsemblChromosome Y
EntrezChromosome Y
NCBIChromosome Y
UCSCChromosome Y
Full DNA sequences
RefSeqNC_000024 (FASTA)
GenBankCM000686 (FASTA)

The Y chromosome is one of two sex chromosomes (allosomes) in mammals, including humans, and many other animals. The other is the X chromosome. Y is the sex-determining chromosome in many species, since it is the presence or absence of Y that determines the male or female sex of offspring produced in sexual reproduction. In mammals, the Y chromosome contains the gene SRY, which triggers testis development. The DNA in the human Y chromosome is composed of about 59 million base pairs.[5] The Y chromosome is passed only from father to son. With a 30% difference between humans and chimpanzees, the Y chromosome is one of the fastest-evolving parts of the human genome.[6] To date, over 200 Y-linked genes have been identified.[7] All Y-linked genes are expressed and (apart from duplicated genes) hemizygous (present on only one chromosome) except in the cases of aneuploidy such as XYY syndrome or XXYY syndrome.

Overview

Discovery

The Y chromosome was identified as a sex-determining chromosome by Nettie Stevens at Bryn Mawr College in 1905 during a study of the mealworm Tenebrio molitor. Edmund Beecher Wilson independently discovered the same mechanisms the same year. Stevens proposed that chromosomes always existed in pairs and that the Y chromosome was the pair of the X chromosome discovered in 1890 by Hermann Henking. He realized that the previous idea of Clarence Erwin McClung, that the X chromosome determines sex, was wrong and that sex determination is, in fact, due to the presence or absence of the Y chromosome. Stevens named the chromosome "Y" simply to follow on from Henking's "X" alphabetically.[8][9]

The idea that the Y chromosome was named after its similarity in appearance to the letter "Y" is mistaken. All chromosomes normally appear as an amorphous blob under the microscope and only take on a well-defined shape during mitosis. This shape is vaguely X-shaped for all chromosomes. It is entirely coincidental that the Y chromosome, during mitosis, has two very short branches which can look merged under the microscope and appear as the descender of a Y-shape.[10]

Variations

Most therian mammals have only one pair of sex chromosomes in each cell. Males have one Y chromosome and one X chromosome, while females have two X chromosomes. In mammals, the Y chromosome contains a gene, SRY, which triggers embryonic development as a male. The Y chromosomes of humans and other mammals also contain other genes needed for normal sperm production.

There are exceptions, however. For example, the platypus relies on an XY sex-determination system based on five pairs of chromosomes.[11] Platypus sex chromosomes have strong sequence similarity with the avian Z chromosome, (indicating close homology),[12] and the SRY gene so central to sex-determination in most other mammals is apparently not involved in platypus sex-determination.[13] Among humans, some men have two Xs and a Y ("XXY", see Klinefelter syndrome), or one X and two Ys (see XYY syndrome), and some women have three Xs or a single X instead of a double X ("X0", see Turner syndrome). There are other exceptions in which SRY is damaged (leading to an XY female), or copied to the X (leading to an XX male).

Origins and evolution

Before Y chromosome

Many ectothermic vertebrates have no sex chromosomes. If they have different sexes, sex is determined environmentally rather than genetically. For some of them, especially reptiles, sex depends on the incubation temperature; others are hermaphroditic (meaning they contain both male and female gametes in the same individual).

Origin

The X and Y chromosomes are thought to have evolved from a pair of identical chromosomes,[14][15] termed autosomes, when an ancestral animal developed an allelic variation, a so-called "sex locus" – simply possessing this allele caused the organism to be male.[16] The chromosome with this allele became the Y chromosome, while the other member of the pair became the X chromosome. Over time, genes that were beneficial for males and harmful to (or had no effect on) females either developed on the Y chromosome or were acquired through the process of translocation.[17]

Until recently, the X and Y chromosomes were thought to have diverged around 300 million years ago.[18] However, research published in 2010,[19] and particularly research published in 2008 documenting the sequencing of the platypus genome,[12] has suggested that the XY sex-determination system would not have been present more than 166 million years ago, at the split of the monotremes from other mammals.[13] This re-estimation of the age of the therian XY system is based on the finding that sequences that are on the X chromosomes of marsupials and eutherian mammals are present on the autosomes of platypus and birds.[13] The older estimate was based on erroneous reports that the platypus X chromosomes contained these sequences.[11][20]

Recombination inhibition

Recombination between the X and Y chromosomes proved harmful—it resulted in males without necessary genes formerly found on the Y chromosome, and females with unnecessary or even harmful genes previously only found on the Y chromosome. As a result, genes beneficial to males accumulated near the sex-determining genes, and recombination in this region was suppressed in order to preserve this male specific region.[16] Over time, the Y chromosome changed in such a way as to inhibit the areas around the sex determining genes from recombining at all with the X chromosome. As a result of this process, 95% of the human Y chromosome is unable to recombine. Only the tips of the Y and X chromosomes recombine. The tips of the Y chromosome that could recombine with the X chromosome are referred to as the pseudoautosomal region. The rest of the Y chromosome is passed on to the next generation intact, allowing for its use in tracking human evolution.[citation needed]

Degeneration

By one estimate, the human Y chromosome has lost 1,393 of its 1,438 original genes over the course of its existence, and linear extrapolation of this 1,393-gene loss over 300 million years gives a rate of genetic loss of 4.6 genes per million years.[21] Continued loss of genes at the rate of 4.6 genes per million years would result in a Y chromosome with no functional genes – that is the Y chromosome would lose complete function – within the next 10 million years, or half that time with the current age estimate of 160 million years.[16][22] Comparative genomic analysis reveals that many mammalian species are experiencing a similar loss of function in their heterozygous sex chromosome. Degeneration may simply be the fate of all non-recombining sex chromosomes, due to three common evolutionary forces: high mutation rate, inefficient selection, and genetic drift.[16]

However, comparisons of the human and chimpanzee Y chromosomes (first published in 2005) show that the human Y chromosome has not lost any genes since the divergence of humans and chimpanzees between 6–7 million years ago,[23] and a scientific report in 2012 stated that only one gene had been lost since humans diverged from the rhesus macaque 25 million years ago.[24] These facts provide direct evidence that the linear extrapolation model is flawed and suggest that the current human Y chromosome is either no longer shrinking or is shrinking at a much slower rate than the 4.6 genes per million years estimated by the linear extrapolation model.

High mutation rate

The human Y chromosome is particularly exposed to high mutation rates due to the environment in which it is housed. The Y chromosome is passed exclusively through sperm, which undergo multiple cell divisions during gametogenesis. Each cellular division provides further opportunity to accumulate base pair mutations. Additionally, sperm are stored in the highly oxidative environment of the testis, which encourages further mutation. These two conditions combined put the Y chromosome at a greater risk of mutation than the rest of the genome.[16] The increased mutation risk for the Y chromosome is reported by Graves as a factor 4.8.[16] However, her original reference obtains this number for the relative mutation rates in male and female germ lines for the lineage leading to humans.[25]

Inefficient selection

Without the ability to recombine during meiosis, the Y chromosome is unable to expose individual alleles to natural selection. Deleterious alleles are allowed to "hitchhike" with beneficial neighbors, thus propagating maladapted alleles in to the next generation. Conversely, advantageous alleles may be selected against if they are surrounded by harmful alleles (background selection). Due to this inability to sort through its gene content, the Y chromosome is particularly prone to the accumulation of "junk" DNA. Massive accumulations of retrotransposable elements are scattered throughout the Y.[16] The random insertion of DNA segments often disrupts encoded gene sequences and renders them nonfunctional. However, the Y chromosome has no way of weeding out these "jumping genes". Without the ability to isolate alleles, selection cannot effectively act upon them.[citation needed]

A clear, quantitative indication of this inefficiency is the entropy rate of the Y chromosome. Whereas all other chromosomes in the human genome have entropy rates of 1.5–1.9 bits per nucleotide (compared to the theoretical maximum of exactly 2 for no redundancy), the Y chromosome's entropy rate is only 0.84.[26] This means the Y chromosome has a much lower information content relative to its overall length; it is more redundant.

Genetic drift

Even if a well adapted Y chromosome manages to maintain genetic activity by avoiding mutation accumulation, there is no guarantee it will be passed down to the next generation. The population size of the Y chromosome is inherently limited to 1/4 that of autosomes: diploid organisms contain two copies of autosomal chromosomes while only half the population contains 1 Y chromosome. Thus, genetic drift is an exceptionally strong force acting upon the Y chromosome. Through sheer random assortment, an adult male may never pass on his Y chromosome if he only has female offspring. Thus, although a male may have a well adapted Y chromosome free of excessive mutation, it may never make it in to the next gene pool.[16] The repeat random loss of well-adapted Y chromosomes, coupled with the tendency of the Y chromosome to evolve to have more deleterious mutations rather than less for reasons described above, contributes to the species-wide degeneration of Y chromosomes through Muller's ratchet.[27]

Gene conversion

As it has been already mentioned, the Y chromosome is unable to recombine during meiosis like the other human chromosomes; however, in 2003, researchers from MIT discovered a process which may slow down the process of degradation. They found that human Y chromosome is able to "recombine" with itself, using palindrome base pair sequences.[28] Such a "recombination" is called gene conversion.

In the case of the Y chromosomes, the palindromes are not noncoding DNA; these strings of bases contain functioning genes important for male fertility. Most of the sequence pairs are greater than 99.97% identical. The extensive use of gene conversion may play a role in the ability of the Y chromosome to edit out genetic mistakes and maintain the integrity of the relatively few genes it carries. In other words, since the Y chromosome is single, it has duplicates of its genes on itself instead of having a second, homologous, chromosome. When errors occur, it can use other parts of itself as a template to correct them.[citation needed]

Findings were confirmed by comparing similar regions of the Y chromosome in humans to the Y chromosomes of chimpanzees, bonobos and gorillas. The comparison demonstrated that the same phenomenon of gene conversion appeared to be at work more than 5 million years ago, when humans and the non-human primates diverged from each other.[citation needed]

Future evolution

In the terminal stages of the degeneration of the Y chromosome, other chromosomes increasingly take over genes and functions formerly associated with it. Finally, the Y chromosome disappears entirely, and a new sex-determining system arises.[16][neutrality is disputed][improper synthesis?] Several species of rodent in the sister families Muridae and Cricetidae have reached these stages,[29][30] in the following ways:

  • The Transcaucasian mole vole, Ellobius lutescens, the Zaisan mole vole, Ellobius tancrei, and the Japanese spinous country rats Tokudaia osimensis and Tokudaia tokunoshimensis, have lost the Y chromosome and SRY entirely.[16][31][32] Tokudaia spp. have relocated some other genes ancestrally present on the Y chromosome to the X chromosome.[32] Both sexes of Tokudaia spp. and Ellobius lutescens have an XO genotype (Turner syndrome),[32] whereas all Ellobius tancrei possess an XX genotype.[16] The new sex-determining system(s) for these rodents remains unclear.
  • The wood lemming Myopus schisticolor, the Arctic lemming, Dicrostonyx torquatus, and multiple species in the grass mouse genus Akodon have evolved fertile females who possess the genotype generally coding for males, XY, in addition to the ancestral XX female, through a variety of modifications to the X and Y chromosomes.[29][33][34]
  • In the creeping vole, Microtus oregoni, the females, with just one X chromosome each, produce X gametes only, and the males, XY, produce Y gametes, or gametes devoid of any sex chromosome, through nondisjunction.[35]

Outside of the rodents, the black muntjac, Muntiacus crinifrons, evolved new X and Y chromosomes through fusions of the ancestral sex chromosomes and autosomes.[36]

1:1 sex ratio

Fisher's principle outlines why almost all species using sexual reproduction have a sex ratio of 1:1. W. D. Hamilton gave the following basic explanation in his 1967 paper on "Extraordinary sex ratios",[37] given the condition that males and females cost equal amounts to produce:

  1. Suppose male births are less common than female.
  2. A newborn male then has better mating prospects than a newborn female, and therefore can expect to have more offspring.
  3. Therefore, parents genetically disposed to produce males tend to have more than average numbers of grandchildren born to them.
  4. Therefore, the genes for male-producing tendencies spread, and male births become more common.
  5. As the 1:1 sex ratio is approached, the advantage associated with producing males dies away.
  6. The same reasoning holds if females are substituted for males throughout. Therefore, 1:1 is the equilibrium ratio.

Non-mammal Y chromosome

Many groups of organisms in addition to mammals have Y chromosomes, but these Y chromosomes do not share common ancestry with mammalian Y chromosomes. Such groups include Drosophila, some other insects, some fish, some reptiles, and some plants. In Drosophila melanogaster, the Y chromosome does not trigger male development. Instead, sex is determined by the number of X chromosomes. The D. melanogaster Y chromosome does contain genes necessary for male fertility. So XXY D. melanogaster are female, and D. melanogaster with a single X (X0), are male but sterile. There are some species of Drosophila in which X0 males are both viable and fertile.[citation needed]

ZW chromosomes

Other organisms have mirror image sex chromosomes: where the homogeneous sex is the male, said to have two Z chromosomes, and the female is the heterogeneous sex, and said to have a Z chromosome and a W chromosome. For example, female birds, snakes, and butterflies have ZW sex chromosomes, and males have ZZ sex chromosomes.[citation needed]

Non-inverted Y chromosome

There are some species, such as the Japanese rice fish, the XY system is still developing and cross over between the X and Y is still possible. Because the male specific region is very small and contains no essential genes, it is even possible to artificially induce XX males and YY females to no ill effect.[38]

Human Y chromosome

In humans, the Y chromosome spans about 58 million base pairs (the building blocks of DNA) and represents approximately 1% of the total DNA in a male cell.[39] The human Y chromosome contains over 200 genes, at least 72 of which code for proteins.[5] Traits that are inherited via the Y chromosome are called Y-linked, or holandric traits.

Some cells, especially in older men and smokers, lack a Y chromosome. It has been found that men with a higher percentage of hematopoietic stem cells in blood lacking the Y chromosome (and perhaps a higher percentage of other cells lacking it) have a higher risk of certain cancers and have a shorter life expectancy. Men with "loss of Y" (which was defined as no Y in at least 18% of their hematopoietic cells) have been found to die 5.5 years earlier on average than others. This has been interpreted as a sign that the Y chromosome plays a role going beyond sex determination and reproduction[40] (although the loss of Y may be an effect rather than a cause). And yet women, who have no Y chromosome, have lower rates of cancer. Male smokers have between 1.5 and 2 times the risk of non-respiratory cancers as female smokers.[41][42]

Non-combining region of Y (NRY)

The human Y chromosome is normally unable to recombine with the X chromosome, except for small pieces of pseudoautosomal regions at the telomeres (which comprise about 5% of the chromosome's length). These regions are relics of ancient homology between the X and Y chromosomes. The bulk of the Y chromosome, which does not recombine, is called the "NRY", or non-recombining region of the Y chromosome.[43] The single-nucleotide polymorphisms (SNPs) in this region are used to trace direct paternal ancestral lines.

Genes

Number of genes

The following are some of the gene count estimates of human Y chromosome. Because researchers use different approaches to genome annotation their predictions of the number of genes on each chromosome varies (for technical details, see gene prediction). Among various projects, the collaborative consensus coding sequence project (CCDS) takes an extremely conservative strategy. So CCDS's gene number prediction represents a lower bound on the total number of human protein-coding genes.[44]

Estimated by Protein-coding genes Non-coding RNA genes Pseudogenes Source Release date
CCDS 63 [2] 2016-09-08
HGNC 45 55 381 [45] 2017-05-12
Ensembl 63 109 392 [46] 2017-03-29
UniProt 47 [47] 2018-02-28
NCBI 73 122 400 [48][49][50] 2017-05-19

Gene list

In general, the human Y chromosome is extremely gene poor—it is one of the largest gene deserts in the human genome. Disregarding pseudoautosomal genes, genes encoded on the human Y chromosome include:

Y-chromosome-linked diseases

Diseases linked to the Y chromosome typically involve an aneuploidy, an atypical number of chromosomes.

Y chromosome microdeletion

Y chromosome microdeletion (YCM) is a family of genetic disorders caused by missing genes in the Y chromosome. Many affected men exhibit no symptoms and lead normal lives. However, YCM is also known to be present in a significant number of men with reduced fertility or reduced sperm count.[citation needed]

Defective Y chromosome

This results in the person presenting a female phenotype (i.e., is born with female-like genitalia) even though that person possesses an XY karyotype. The lack of the second X results in infertility. In other words, viewed from the opposite direction, the person goes through defeminization but fails to complete masculinization.[citation needed]

The cause can be seen as an incomplete Y chromosome: the usual karyotype in these cases is 45X, plus a fragment of Y. This usually results in defective testicular development, such that the infant may or may not have fully formed male genitalia internally or externally. The full range of ambiguity of structure may occur, especially if mosaicism is present. When the Y fragment is minimal and nonfunctional, the child is usually a girl with the features of Turner syndrome or mixed gonadal dysgenesis.[citation needed]

XXY

Klinefelter syndrome (47, XXY) is not an aneuploidy of the Y chromosome, but a condition of having an extra X chromosome, which usually results in defective postnatal testicular function. The mechanism is not fully understood; it does not seem to be due to direct interference by the extra X with expression of Y genes.[citation needed]

XYY

47, XYY syndrome (simply known as XYY syndrome) is caused by the presence of a single extra copy of the Y chromosome in each of a male's cells. 47, XYY males have one X chromosome and two Y chromosomes, for a total of 47 chromosomes per cell. Researchers have found that an extra copy of the Y chromosome is associated with increased stature and an increased incidence of learning problems in some boys and men, but the effects are variable, often minimal, and the vast majority do not know their karyotype.[55]

In 1965 and 1966 Patricia Jacobs and colleagues published a chromosome survey of 315 male patients at Scotland's only special security hospital for the developmentally disabled, finding a higher than expected number of patients to have an extra Y chromosome.[56] The authors of this study wondered "whether an extra Y chromosome predisposes its carriers to unusually aggressive behaviour", and this conjecture "framed the next fifteen years of research on the human Y chromosome".[57]

Through studies over the next decade, this conjecture was shown to be incorrect: the elevated crime rate of XYY males is due to lower median intelligence and not increased aggression,[58] and increased height was the only characteristic that could be reliably associated with XYY males.[59] The "criminal karyotype" concept is therefore inaccurate.[55]

Rare

The following Y-chromosome-linked diseases are rare, but notable because of their elucidating of the nature of the Y chromosome.

More than two Y chromosomes

Greater degrees of Y chromosome polysomy (having more than one extra copy of the Y chromosome in every cell, e.g., XYYY) are rare. The extra genetic material in these cases can lead to skeletal abnormalities, decreased IQ, and delayed development, but the severity features of these conditions are variable.[citation needed]

XX male syndrome

XX male syndrome occurs when there has been a recombination in the formation of the male gametes, causing the SRY portion of the Y chromosome to move to the X chromosome. When such an X chromosome contributes to the child, the development will lead to a male, because of the SRY gene.[citation needed]

Genetic genealogy

In human genetic genealogy (the application of genetics to traditional genealogy), use of the information contained in the Y chromosome is of particular interest because, unlike other chromosomes, the Y chromosome is passed exclusively from father to son, on the patrilineal line. Mitochondrial DNA, maternally inherited to both sons and daughters, is used in an analogous way to trace the matrilineal line.[citation needed]

Brain function

Research is currently investigating whether male-pattern neural development is a direct consequence of Y-chromosome-related gene expression or an indirect result of Y-chromosome-related androgenic hormone production.[60]

Microchimerism

The presence of male chromosomes in fetal cells in the blood circulation of women was discovered in 1974.[61]

In 1996, it was found that male fetal progenitor cells could persist postpartum in the maternal blood stream for as long as 27 years.[62]

A 2004 study at the Fred Hutchinson Cancer Research Center, Seattle, investigated the origin of male chromosomes found in the peripheral blood of women who had not had male progeny. A total of 120 subjects (women who had never had sons) were investigated, and it was found that 21% of them had male DNA. The subjects were categorised into four groups based on their case histories:[63]

  • Group A (8%) had had only female progeny.
  • Patients in Group B (22%) had a history of one or more miscarriages.
  • Patients Group C (57%) had their pregnancies medically terminated.
  • Group D (10%) had never been pregnant before.

The study noted that 10% of the women had never been pregnant before, raising the question of where the Y chromosomes in their blood could have come from. The study suggests that possible reasons for occurrence of male chromosome microchimerism could be one of the following:[63]

  • miscarriages,
  • pregnancies,
  • vanished male twin,
  • possibly from sexual intercourse.

A 2012 study at the same institute has detected cells with the Y chromosome in multiple areas of the brains of deceased women.[64]

Cytogenetic band

G-banding ideograms of human Y chromosome
G-banding ideogram of human Y chromosome in resolution 850 bphs. Band length in this diagram is proportional to base-pair length. This type of ideogram is generally used in genome browsers (e.g. Ensembl, UCSC Genome Browser).
G-banding patterns of human Y chromosome in three different resolutions (400,[65] 550[66] and 850[4]). Band length in this diagram is based on the ideograms from ISCN (2013).[67] This type of ideogram represents actual relative band length observed under a microscope at the different moments during the mitotic process.[68]
G-bands of human Y chromosome in resolution 850 bphs[4]
Chr. Arm[69] Band[70] ISCN
start[71]
ISCN
stop[71]
Basepair
start
Basepair
stop
Stain[72] Density
Y p 11.32 0 149 1 300,000 gneg
Y p 11.31 149 298 300,001 600,000 gpos 50
Y p 11.2 298 1043 600,001 10,300,000 gneg
Y p 11.1 1043 1117 10,300,001 10,400,000 acen
Y q 11.1 1117 1266 10,400,001 10,600,000 acen
Y q 11.21 1266 1397 10,600,001 12,400,000 gneg
Y q 11.221 1397 1713 12,400,001 17,100,000 gpos 50
Y q 11.222 1713 1881 17,100,001 19,600,000 gneg
Y q 11.223 1881 2160 19,600,001 23,800,000 gpos 50
Y q 11.23 2160 2346 23,800,001 26,600,000 gneg
Y q 12 2346 3650 26,600,001 57,227,415 gvar

See also

References

  1. "Human Genome Assembly GRCh38 - Genome Reference Consortium". National Center for Biotechnology Information. 2013-12-24. Retrieved 2017-03-04.
  2. 2.0 2.1 "Search results - Y[CHR] AND "Homo sapiens"[Organism] AND ("has ccds"[Properties] AND alive[prop]) - Gene". CCDS Release 20 for Homo sapiens. 2016-09-08. Retrieved 2017-05-28.
  3. Tom Strachan; Andrew Read (2 April 2010). Human Molecular Genetics. Garland Science. p. 45. ISBN 978-1-136-84407-2.
  4. 4.0 4.1 4.2 Genome Decoration Page, NCBI. Ideogram data for Homo sapience (850 bphs, Assembly GRCh38.p3). Last update 2014-06-03. Retrieved 2017-04-26.
  5. 5.0 5.1 "Ensembl Human MapView release 43". February 2014. Retrieved 2007-04-14.
  6. Wade, Nicholas (January 13, 2010). "Male Chromosome May Evolve Fastest". New York Times.
  7. Genes and Disease. Bethesda, Maryland: National Center for Biotechnology Information.
  8. David Bainbridge, The X in Sex: How the X Chromosome Controls Our Lives, pages 3-5, 13, Harvard University Press, 2003 ISBN 0674016211.
  9. James Schwartz, In Pursuit of the Gene: From Darwin to DNA, pages 170-172, Harvard University Press, 2009 ISBN 0674034910
  10. Bainbridge, pages 65-66
  11. 11.0 11.1 Grützner F, Rens W, Tsend-Ayush E, et al. (2004). "In the platypus a meiotic chain of ten sex chromosomes shares genes with the bird Z and mammal X chromosomes". Nature. 432 (7019): 913–9177. Bibcode:2004Natur.432..913G. doi:10.1038/nature03021. PMID 15502814.
  12. 12.0 12.1 Warren WC, Hillier LD, Graves JA, et al. (2008). "Genome analysis of the platypus reveals unique signatures of evolution". Nature. 453 (7192): 175–183. Bibcode:2008Natur.453..175W. doi:10.1038/nature06936. PMC 2803040. PMID 18464734.
  13. 13.0 13.1 13.2 Veyrunes F, Waters PD, Miethke P, et al. (2008). "Bird-like sex chromosomes of platypus imply recent origin of mammal sex chromosomes". Genome Research. 18 (6): 965–973. doi:10.1101/gr.7101908. PMC 2413164. PMID 18463302.
  14. Muller, H. J. (1914). "A gene for the fourth chromosome of Drosophila". Journal of Experimental Zoology. 17 (3): 325–336. doi:10.1002/jez.1400170303.
  15. Lahn B, Page D (1999). "Four evolutionary strata on the human X chromosome". Science. 286 (5441): 964–7. doi:10.1126/science.286.5441.964. PMID 10542153.
  16. 16.00 16.01 16.02 16.03 16.04 16.05 16.06 16.07 16.08 16.09 16.10 Graves, J. A. M. (2006). "Sex chromosome specialization and degeneration in mammals". Cell. 124 (5): 901–914. doi:10.1016/j.cell.2006.02.024. PMID 16530039.
  17. Graves J. A. M.; Koina E.; Sankovic N. (2006). "How the gene content of human sex chromosomes evolved". Curr Opin Genet Dev. 16 (3): 219–24. doi:10.1016/j.gde.2006.04.007. PMID 16650758.
  18. "Y chromosome evolution: emerging insights into processes of Y chromosome degeneration". PMC 4120474. Missing or empty |url= (help)
  19. Hamilton, Jon (January 13, 2010). "Human Male: Still A Work in Progress". NPR.
  20. Watson, Jaclyn M.; Riggs, Arthur; Graves, Jennifer A. Marshall (1992). "Gene mapping studies confirm the homology between the platypus X and echidna X1 chromosomes and identify a conserved ancestral monotreme X chromosome". Chromosoma. 101 (10): 596–601. doi:10.1007/BF00360536.
  21. Graves, J. A. M. (2004). "The degenerate Y chromosome—can conversion save it?". Reproduction Fertility and Development. 16 (5): 527–534. doi:10.1071/RD03096. PMID 15367368.
  22. Goto, H.; Peng, L.; Makova, K. D. (2009). "Evolution of X-degenerate Y chromosome genes in greater apes: conservation of gene content in human and gorilla, but not chimpanzee". Journal of Molecular Evolution. 68 (2): 134–144. Bibcode:2009JMolE..68..134G. doi:10.1007/s00239-008-9189-y. PMID 19142680.
  23. Hughes, Jennifer F.; et al. (2005). "Conservation of Y-linked genes during human evolution revealed by comparative sequencing in chimpanzee". Nature. 437 (7055): 100–103. Bibcode:2005Natur.437..100H. doi:10.1038/nature04101. PMID 16136134.
  24. Hsu, Christine. "Biologists Debunk the 'Rotting' Y Chromosome Theory, Men Will Still Exist". Medical Daily.
  25. Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M, et al. (December 2005). "Genome sequence, comparative analysis and haplotype structure of the domestic dog". Nature. 438 (7069): 803–819. Bibcode:2005Natur.438..803L. doi:10.1038/nature04338. PMID 16341006.
  26. Liu, Zhandong; Venkatesh, Santosh S.; Maley, Carlo C. (2008). "Sequence space coverage, entropy of genomes and the potential to detect non-human DNA in human samples". BMC Genomics. 9 (1): 509. doi:10.1186/1471-2164-9-509. PMC 2628393. PMID 18973670. Fig. 6, using the Lempel-Ziv estimators of entropy rate.
  27. Charlesworth, B.; Charlesworth, D. (2000). "The degeneration of Y chromosomes". Philosophical Transactions of the Royal Society B. 355 (1403): 1563–1572. doi:10.1098/rstb.2000.0717. PMC 1692900.
  28. Rozen S, Skaletsky H, Marszalek J, Minx P, Cordum H, Waterston R, Wilson R, Page D (2003). "Abundant gene conversion between arms of palindromes in human and ape Y chromosomes". Nature. 423 (6942): 873–6. Bibcode:2003Natur.423..873R. doi:10.1038/nature01723. PMID 12815433.
  29. 29.0 29.1 Marchal, J. A.; Acosta, M. J.; Bullejos, M.; de la Guardia, R. D.; Sanchez, A. (2003). "Sex chromosomes, sex determination, and sex-linked sequences in Microtidae". Cytogenetic and Genome Research. 101 (3–4): 266–273. doi:10.1159/000074347.
  30. Wilson, M. A.; Makova, K. D. (2009). "Genomic analyses of sex chromosome evolution". Annual Review of Genomics and Human Genetics. 10 (1): 333–354. doi:10.1146/annurev-genom-082908-150105. PMID 19630566.
  31. Just, W.; Baumstark, A.; Suss, A.; Graphodatsky, A.; Rens, W.; Schafer, N.; Bakloushinskaya, I.; et al. (2007). "Ellobius lutescens: Sex determination and sex chromosome". Sexual Development. 1 (4): 211–221. doi:10.1159/000104771. PMID 18391532.
  32. 32.0 32.1 32.2 Arakawa, Y.; Nishida-Umehara, C.; Matsuda, Y.; Sutou, S.; Suzuki, H. (2002). "X-chromosomal localization of mammalian Y-linked genes in two XO species of the Ryukyu spiny rat". Cytogenetic and Genome Research. 99 (1–4): 303–309. doi:10.1159/000071608. PMID 12900579.
  33. Hoekstra, H. E.; Edwards, S. V. (2000). "Multiple origins of XY female mice (genus Akodon): phylogenetic and chromosomal evidence". Proceedings of the Royal Society B. 267 (1455): 1825–1831. doi:10.1098/rspb.2000.1217. PMC 1690748. PMID 11052532.
  34. Ortiz, M. I.; Pinna-Senn, E.; Dalmasso, G.; Lisanti, J. A. (2009). "Chromosomal aspects and inheritance of the XY female condition in Akodon azarae (Rodentia, Sigmodontinae)". Mammalian Biology. 74 (2): 125–129. doi:10.1016/j.mambio.2008.03.001.
  35. Charlesworth, B.; Dempsey, N. D. (2001). "A model of the evolution of the unusual sex chromosome system of Microtus oregoni". Heredity. 86 (4): 387–394. doi:10.1046/j.1365-2540.2001.00803.x. PMID 11520338.
  36. Zhou, Q.; Wang, J.; Huang, L.; Nie, W. H.; Wang, J. H.; Liu, Y.; Zhao, X. Y.; et al. (2008). "Neo-sex chromosomes in the black muntjac recapitulate incipient evolution of mammalian sex chromosomes". Genome Biology. 9 (6): R98. doi:10.1186/gb-2008-9-6-r98. PMC 2481430. PMID 18554412.
  37. Hamilton, W. D. (1967). "Extraordinary sex ratios". Science. 156 (3774): 477–488. Bibcode:1967Sci...156..477H. doi:10.1126/science.156.3774.477. PMID 6021675.
  38. Schartl, Manfred (July 2004). "A comparative view on sex determination in medaka". Mechanisms of Development. 121 (7–8): 639–645. doi:10.1016/j.mod.2004.03.001. PMID 15210173. Retrieved 6 December 2011.
  39. National Library of Medicine's Genetic Home Reference
  40. Lars A. Forsberg; et al. (April 2014). "Mosaic loss of chromosome Y in peripheral blood is associated with shorter survival and higher risk of cancer". Nature Genetics. 46 (6): 624–628. doi:10.1038/ng.2966. PMID 24777449.
  41. Andy Coghlan (13 December 2014). "Y men are more likely to get cancer than women". New Scientist: 17.
  42. Jan P. Dumanski; et al. (December 2014). "Smoking is associated with mosaic loss of chromosome Y". Science. 347 (6217): 81–3. Bibcode:2015Sci...347...81D. doi:10.1126/science.1262092. PMC 4356728. PMID 25477213.
  43. Science Daily, Apr. 3, 2008.
  44. Pertea M, Salzberg SL (2010). "Between a chicken and a grape: estimating the number of human genes". Genome Biol. 11 (5): 206. doi:10.1186/gb-2010-11-5-206. PMC 2898077. PMID 20441615.
  45. "Statistics & Downloads for chromosome Y". HUGO Gene Nomenclature Committee. 2017-05-12. Retrieved 2017-05-19.
  46. "Chromosome Y: Chromosome summary - Homo sapiens". Ensembl Release 88. 2017-03-29. Retrieved 2017-05-19.
  47. "Human chromosome Y: entries, gene names and cross-references to MIM". UniProt. 2018-02-28. Retrieved 2018-03-16.
  48. "Search results - Y[CHR] AND "Homo sapiens"[Organism] AND ("genetype protein coding"[Properties] AND alive[prop]) - Gene". 2017-05-19. Retrieved 2017-05-20.
  49. "Search results - Y[CHR] AND "Homo sapiens"[Organism] AND ( ("genetype miscrna"[Properties] OR "genetype ncrna"[Properties] OR "genetype rrna"[Properties] OR "genetype trna"[Properties] OR "genetype scrna"[Properties] OR "genetype snrna"[Properties] OR "genetype snorna"[Properties]) NOT "genetype protein coding"[Properties] AND alive[prop]) - Gene". 2017-05-19. Retrieved 2017-05-20.
  50. "Search results - Y[CHR] AND "Homo sapiens"[Organism] AND ("genetype pseudo"[Properties] AND alive[prop]) - Gene". 2017-05-19. Retrieved 2017-05-20.
  51. Bachtrog, Doris (18 January 2013). "Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration". Nature Reviews Genetics. 14 (2): 113–124. doi:10.1038/nrg3366. PMC 4120474.
  52. Veerappa, Avinash; Ramachandra NB; Prakash Padakannaya (August 2013). "Copy number variation-based polymorphism in a new pseudoautosomal region 3 (PAR3) of a human X-chromosome-transposed region (XTR) in the Y chromosome". Functional and Integrative Genomics. 13 (3): 285–293. doi:10.1007/s10142-013-0323-6. PMID 23708688.
  53. Veerappa, Avinash; Ramachandra NB; Padakannaya P (August 2013). "Copy number variation-based polymorphism in a new pseudoautosomal region 3 (PAR3) of a human X-chromosome-transposed region (XTR) in the Y chromosome". Functional & Integrative Genomics. 13 (3): 285–293. doi:10.1007/s10142-013-0323-6. PMID 23708688.
  54. Raudsepp, Terje; Chowdhary, Bhanu P. (6 January 2016). "The Eutherian Pseudoautosomal Region". Cytogenetic and Genome Research. 147 (2–3): 81–94. doi:10.1159/000443157.
  55. 55.0 55.1 1950-, Nussbaum, Robert L., (2007). Thompson & Thompson genetics in medicine. McInnes, Roderick R., Willard, Huntington F., Hamosh, Ada., Thompson, Margaret W. (Margaret Wilson), 1920- (7th. ed.). Philadelphia: Saunders/Elsevier. ISBN 1416030808. OCLC 72774424.
  56. Jacobs, Patricia A.; Brunton, Muriel; Melville, Marie M.; Brittain, Robert P.; McClemont, William F. (December 25, 1965). "Aggressive behavior, mental sub-normality and the XYY male". Nature. 208 (5017): 1351–2. doi:10.1038/2081351a0. PMID 5870205.
  57. Richardson, Sarah S. (2013). Sex Itself: The Search for Male & Female in the Human Genome. Chicago: U. of Chicago Press. p. 84. ISBN 978-0-226-08468-8.
  58. Witkin HA, Mednick SA, Schulsinger F, Bakkestrom E, Christiansen KO, Goodenough DR, Hirschhorn K, Lundsteen C, Owen DR, Philip J, Rubin DB, Stocking M (August 1976). "Criminality in XYY and XXY men". Science. 193 (4253): 547–55. Bibcode:1976Sci...193..547W. doi:10.1126/science.959813. PMID 959813.
  59. Witkin, Herman A.; Goodenough, Donald R.; Hirschhorn, Kurt (1977). "XYY Men: Are They Criminally Aggressive?". The Sciences. 17 (6): 10–13. doi:10.1002/j.2326-1951.1977.tb01570.x.
  60. Kopsida, Eleni; Evangelia Stergiakouli; Phoebe M. Lynn; Lawrence S. Wilkinson; William Davies (2009). "The Role of the Y Chromosome in Brain Function" (PDF). The Open Neuroendocrinology Journal. 2: 20–30. doi:10.2174/1876528900902010020. PMC 2854822. PMID 20396406. Retrieved 2013-04-05.
  61. Schröder J, Thlikainen A, de la Chapelle A (1974). "Fetal leukocytes in the maternal circulation after delivery: Cytological aspects". Transplantation. 17 (4): 346–354. doi:10.1097/00007890-197404000-00003. ISSN 0041-1337.
  62. Bianchi D. W.; Zickwolf G. K.; Weil G. J.; Sylvester S.; DeMaria M. A. (1996). "Male fetal progenitor cells persist in maternal blood for as long as 27 years postpartum". Proceedings of the National Academy of Sciences of the United States of America. 93 (2): 705–708. Bibcode:1996PNAS...93..705B. doi:10.1073/pnas.93.2.705. PMC 40117. PMID 8570620.
  63. 63.0 63.1 Yan, Zhen; Lambert, Nathalie C.; Guthrie, Katherine A.; Porter, Allison J.; Loubiere, Laurence S.; Madeleine, Margaret M.; Stevens, Anne M.; Hermes, Heidi M. & Nelson, J. Lee (2005). "Male microchimerism in women without sons: Quantitative assessment and correlation with pregnancy history" (full text). The American Journal of Medicine. 118 (8): 899–906. doi:10.1016/j.amjmed.2005.03.037. PMID 16084184. Retrieved 24 December 2014.
  64. Chan W. F. N.; Gurnot C.; Montine T. J.; Sonnen J. A.; Guthrie K. A.; J. Lee Nelson (26 September 2012). "Male microchimerism in the human female brain". PLOS ONE. 7 (9): e45592. Bibcode:2012PLoSO...745592C. doi:10.1371/journal.pone.0045592. PMC 3458919. PMID 23049819. Retrieved 24 December 2014.
  65. Genome Decoration Page, NCBI. Ideogram data for Homo sapience (400 bphs, Assembly GRCh38.p3). Last update 2014-03-04. Retrieved 2017-04-26.
  66. Genome Decoration Page, NCBI. Ideogram data for Homo sapience (550 bphs, Assembly GRCh38.p3). Last update 2015-08-11. Retrieved 2017-04-26.
  67. International Standing Committee on Human Cytogenetic Nomenclature (2013). ISCN 2013: An International System for Human Cytogenetic Nomenclature (2013). Karger Medical and Scientific Publishers. ISBN 978-3-318-02253-7.
  68. Sethakulvichai, W.; Manitpornsut, S.; Wiboonrat, M.; Lilakiatsakun, W.; Assawamakin, A.; Tongsima, S. (2012). "Estimation of band level resolutions of human chromosome images" (PDF). In Computer Science and Software Engineering (JCSSE), 2012 International Joint Conference on: 276–282. doi:10.1109/JCSSE.2012.6261965.
  69. "p": Short arm; "q": Long arm.
  70. For cytogenetic banding nomenclature, see article locus.
  71. 71.0 71.1 These values (ISCN start/stop) are based on the length of bands/ideograms from the ISCN book, An International System for Human Cytogenetic Nomenclature (2013). Arbitrary unit.
  72. gpos: Region which is positively stained by G banding, generally AT-rich and gene poor; gneg: Region which is negatively stained by G banding, generally CG-rich and gene rich; acen Centromere. var: Variable region; stalk: Stalk.

External links