Central pontine myelinolysis pathophysiology: Difference between revisions

Jump to navigation Jump to search
M Jahan (talk | contribs)
No edit summary
M Jahan (talk | contribs)
Line 11: Line 11:
*It is understood that central pontine myelinolysis is caused by rapid correction of [[hyponatremia]].<ref name="pmid24682140">{{cite journal| author=Mascarenhas JV, Jude EB| title=Central pontine myelinolysis: electrolytes and beyond. | journal=BMJ Case Rep | year= 2014 | volume= 2014 | issue=  | pages=  | pmid=24682140 | doi=10.1136/bcr-2013-203516 | pmc=3975522 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=24682140  }} </ref>
*It is understood that central pontine myelinolysis is caused by rapid correction of [[hyponatremia]].<ref name="pmid24682140">{{cite journal| author=Mascarenhas JV, Jude EB| title=Central pontine myelinolysis: electrolytes and beyond. | journal=BMJ Case Rep | year= 2014 | volume= 2014 | issue=  | pages=  | pmid=24682140 | doi=10.1136/bcr-2013-203516 | pmc=3975522 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=24682140  }} </ref>
*The [[CNS]] is particularly susceptible to reductions in [[plasma osmolarity]], specially during [[hyponatremia]] which is the most commonly encountered [[electrolyte disturbance]].
*The [[CNS]] is particularly susceptible to reductions in [[plasma osmolarity]], specially during [[hyponatremia]] which is the most commonly encountered [[electrolyte disturbance]].
*When a decrease in the plasma [[osmolarity]] happens, neural cells first swell but then they are able to regain their original volume through the:
*When a decrease in the plasma [[osmolarity]] happens, neural cells first swell but then they are able to regain their original volume through the:<ref name="pmid23760391">{{cite journal| author=Khosya S, Meena H| title=Central pontine myelinolysis. | journal=Indian J Med Res | year= 2013 | volume= 137 | issue= 5 | pages= 993-4 | pmid=23760391 | doi= | pmc=3734697 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23760391  }} </ref><ref name="pmid18256030">Burg MB, Ferraris JD (2008) [https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=18256030 Intracellular organic osmolytes: function and regulation.] ''J Biol Chem'' 283 (12):7309-13. [http://dx.doi.org/10.1074/jbc.R700042200 DOI:10.1074/jbc.R700042200] PMID: [https://pubmed.gov/18256030 18256030]</ref>
*#Release of  inorganic and organic osmolytes
*#Release of  inorganic and organic osmolytes
*#Exit of osmotically obligated water
*#Exit of osmotically obligated water
*A subsequent exposure to hypertonic stress(e.g., correction of [[hyponatremia]] with hypertonic I.V. solution's)resulting from a rapid correction of [[hyponatremia]] causes the [[ions]] to quickly re-enter the [[intracellular space]] and compels the water to follow.<ref name="pmid30357070">{{cite journal| author=Sheikh AB, Afzal RM, Sagheer S, Bukhari MM, Javed A, Nasrullah A et al. z| title=The Dilemma of Inadvertent Pontine Demyelinosis: A Review of Literature. | journal=Cureus | year= 2018 | volume= 10 | issue= 8 | pages= e3174 | pmid=30357070 | doi=10.7759/cureus.3174 | pmc=6197531 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=30357070  }} </ref>
*A subsequent exposure to hypertonic stress(e.g., correction of [[hyponatremia]] with hypertonic I.V. solution's)resulting from a rapid correction of [[hyponatremia]] causes the [[ions]] to quickly re-enter the [[intracellular space]] and compels the water to follow.<ref name="pmid30357070">{{cite journal| author=Sheikh AB, Afzal RM, Sagheer S, Bukhari MM, Javed A, Nasrullah A et al. z| title=The Dilemma of Inadvertent Pontine Demyelinosis: A Review of Literature. | journal=Cureus | year= 2018 | volume= 10 | issue= 8 | pages= e3174 | pmid=30357070 | doi=10.7759/cureus.3174 | pmc=6197531 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=30357070  }} </ref>
*If the serum sodium levels rise too rapidly, the increased extracellular tonicity will continue to drive water out of the brain's cells because the brain cells do not have enough time to bring extracellular sudion into the cell, so the water will go out very fast.
*If the serum sodium levels rise too rapidly, the increased extracellular tonicity will continue to drive water out of the brain's cells because the brain cells do not have enough time to bring extracellular sudion into the cell, so the water will go out very fast.<ref name="pmid23760391">{{cite journal| author=Khosya S, Meena H| title=Central pontine myelinolysis. | journal=Indian J Med Res | year= 2013 | volume= 137 | issue= 5 | pages= 993-4 | pmid=23760391 | doi= | pmc=3734697 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23760391  }} </ref>
*This can lead to cellular dysfunction and death and finally central pontine myelinolysis.
*This can lead to cellular dysfunction and death and finally central pontine myelinolysis.<ref name="pmid23760391">{{cite journal| author=Khosya S, Meena H| title=Central pontine myelinolysis. | journal=Indian J Med Res | year= 2013 | volume= 137 | issue= 5 | pages= 993-4 | pmid=23760391 | doi= | pmc=3734697 | url=https://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=23760391  }} </ref>


==Genetics==
==Genetics==

Revision as of 00:59, 1 August 2019

Central pontine myelinolysis Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Central pontine myelinolysis from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Laboratory Findings

Electrocardiogram

X-ray

Echocardiography and Ultrasound

CT scan

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Interventions

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Central pontine myelinolysis pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Central pontine myelinolysis pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Central pontine myelinolysis pathophysiology

CDC on Central pontine myelinolysis pathophysiology

Central pontine myelinolysis pathophysiology in the news

Blogs on Central pontine myelinolysis pathophysiology

Directions to Hospitals Treating Psoriasis

Risk calculators and risk factors for Central pontine myelinolysis pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Mohamadmostafa Jahansouz M.D.[2]

Overview

Pathophysiology

. Given the importance of the maintenance of cell volume within the CNS, mechanisms underlying the release of osmolytes assume major significance. In this context, we review recent evidence obtained from our laboratory and others that indicates that the activation of specific G-protein-coupled receptors can markedly enhance the volume-dependent release of osmolytes from neural cells. Of particular significance is the observation that receptor activation significantly lowers the osmotic threshold at which osmolyte release occurs, thereby facilitating the ability of the cells to respond to small, more physiologically relevant, reductions in osmolarity. The mechanisms underlying G-protein-coupled receptor-mediated osmolyte release and the possibility that this efflux can result in both physiologically beneficial and potentially harmful pathophysiological consequences are discussed.

Pathogenesis

  • It is understood that central pontine myelinolysis is caused by rapid correction of hyponatremia.[1]
  • The CNS is particularly susceptible to reductions in plasma osmolarity, specially during hyponatremia which is the most commonly encountered electrolyte disturbance.
  • When a decrease in the plasma osmolarity happens, neural cells first swell but then they are able to regain their original volume through the:[2][3]
    1. Release of inorganic and organic osmolytes
    2. Exit of osmotically obligated water
  • A subsequent exposure to hypertonic stress(e.g., correction of hyponatremia with hypertonic I.V. solution's)resulting from a rapid correction of hyponatremia causes the ions to quickly re-enter the intracellular space and compels the water to follow.[4]
  • If the serum sodium levels rise too rapidly, the increased extracellular tonicity will continue to drive water out of the brain's cells because the brain cells do not have enough time to bring extracellular sudion into the cell, so the water will go out very fast.[2]
  • This can lead to cellular dysfunction and death and finally central pontine myelinolysis.[2]

Genetics

[Disease name] is transmitted in [mode of genetic transmission] pattern.

OR

Genes involved in the pathogenesis of [disease name] include:

  • [Gene1]
  • [Gene2]
  • [Gene3]

OR

The development of [disease name] is the result of multiple genetic mutations such as:

  • [Mutation 1]
  • [Mutation 2]
  • [Mutation 3]

Associated Conditions

Conditions associated with [disease name] include:

  • [Condition 1]
  • [Condition 2]
  • [Condition 3]

Gross Pathology

On gross pathology, [feature1], [feature2], and [feature3] are characteristic findings of [disease name].

Microscopic Pathology

On microscopic histopathological analysis, [feature1], [feature2], and [feature3] are characteristic findings of [disease name].

References

  1. Mascarenhas JV, Jude EB (2014). "Central pontine myelinolysis: electrolytes and beyond". BMJ Case Rep. 2014. doi:10.1136/bcr-2013-203516. PMC 3975522. PMID 24682140.
  2. 2.0 2.1 2.2 Khosya S, Meena H (2013). "Central pontine myelinolysis". Indian J Med Res. 137 (5): 993–4. PMC 3734697. PMID 23760391.
  3. Burg MB, Ferraris JD (2008) Intracellular organic osmolytes: function and regulation. J Biol Chem 283 (12):7309-13. DOI:10.1074/jbc.R700042200 PMID: 18256030
  4. Sheikh AB, Afzal RM, Sagheer S, Bukhari MM, Javed A, Nasrullah A et al. z (2018). "The Dilemma of Inadvertent Pontine Demyelinosis: A Review of Literature". Cureus. 10 (8): e3174. doi:10.7759/cureus.3174. PMC 6197531. PMID 30357070.

Template:WH Template:WS