COVID-19 Infection in Transplant Patients: Difference between revisions

Jump to navigation Jump to search
Line 149: Line 149:
=== Associated Conditions===
=== Associated Conditions===
*[[Acute kidney injury|Acute Kidney Injury]] has been reported in patients with [[COVID-19]] infection along with presence of [[proteinuria]], [[hematuria]]. In a case observation, 4 out of 7 patients had [[Acute kidney injury|AKI]] which may indicate that [[Kidney transplantation|renal transplant]] patients are at higher risk [[Acute kidney injury|AKI]] on being infected with [[COVID-19]] whereas only 29% [[Acute kidney injury|AKI]] was seen in critically ill patients of general population.
*[[Acute kidney injury|Acute Kidney Injury]] has been reported in patients with [[COVID-19]] infection along with presence of [[proteinuria]], [[hematuria]]. In a case observation, 4 out of 7 patients had [[Acute kidney injury|AKI]] which may indicate that [[Kidney transplantation|renal transplant]] patients are at higher risk [[Acute kidney injury|AKI]] on being infected with [[COVID-19]] whereas only 29% [[Acute kidney injury|AKI]] was seen in critically ill patients of general population.
*[[Acute kidney injury|Acute Kidney Injury]] seen in [[COVID-19]] infection can be from the cytotropic effect (Uptake of [[COVID-19|SARS-Cov-2]] virus into proximal tubule cells is possible explanation for the [[Acute kidney injury|AKI]] seen in [[COVID-19|COVID]] patients<ref name="LiMoore2003">{{cite journal|last1=Li|first1=Wenhui|last2=Moore|first2=Michael J.|last3=Vasilieva|first3=Natalya|last4=Sui|first4=Jianhua|last5=Wong|first5=Swee Kee|last6=Berne|first6=Michael A.|last7=Somasundaran|first7=Mohan|last8=Sullivan|first8=John L.|last9=Luzuriaga|first9=Katherine|last10=Greenough|first10=Thomas C.|last11=Choe|first11=Hyeryun|last12=Farzan|first12=Michael|title=Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus|journal=Nature|volume=426|issue=6965|year=2003|pages=450–454|issn=0028-0836|doi=10.1038/nature02145}}</ref><ref name="RajMou2013">{{cite journal|last1=Raj|first1=V. Stalin|last2=Mou|first2=Huihui|last3=Smits|first3=Saskia L.|last4=Dekkers|first4=Dick H. W.|last5=Müller|first5=Marcel A.|last6=Dijkman|first6=Ronald|last7=Muth|first7=Doreen|last8=Demmers|first8=Jeroen A. A.|last9=Zaki|first9=Ali|last10=Fouchier|first10=Ron A. M.|last11=Thiel|first11=Volker|last12=Drosten|first12=Christian|last13=Rottier|first13=Peter J. M.|last14=Osterhaus|first14=Albert D. M. E.|last15=Bosch|first15=Berend Jan|last16=Haagmans|first16=Bart L.|title=Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC|journal=Nature|volume=495|issue=7440|year=2013|pages=251–254|issn=0028-0836|doi=10.1038/nature12005}}</ref>) of the viral particles as well as systemic inflammatory response induced by the cytokines. Patients admitted with severe disease, [[acute respiratory distress syndrome]] ([[Acute respiratory distress syndrome|ARDS]]) or in patients admitted to ICU have a higher incidence of [[Acute kidney injury|AKI]] . <ref name="ZhouYu2020">{{cite journal|last1=Zhou|first1=Fei|last2=Yu|first2=Ting|last3=Du|first3=Ronghui|last4=Fan|first4=Guohui|last5=Liu|first5=Ying|last6=Liu|first6=Zhibo|last7=Xiang|first7=Jie|last8=Wang|first8=Yeming|last9=Song|first9=Bin|last10=Gu|first10=Xiaoying|last11=Guan|first11=Lulu|last12=Wei|first12=Yuan|last13=Li|first13=Hui|last14=Wu|first14=Xudong|last15=Xu|first15=Jiuyang|last16=Tu|first16=Shengjin|last17=Zhang|first17=Yi|last18=Chen|first18=Hua|last19=Cao|first19=Bin|title=Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study|journal=The Lancet|volume=395|issue=10229|year=2020|pages=1054–1062|issn=01406736|doi=10.1016/S0140-6736(20)30566-3}}</ref>.  Other possible reasons that can play a role in [[Acute kidney injury|AKI]] development, are multi-organ failure resulting in [[acute tubular necrosis]] ([[Acute tubular necrosis|ATN]]), volume reduction causing prerenal [[Acute tubular necrosis|ATN]], high [[fever]], drug toxicity, [[hypotension]], and contrast exposure.
*[[Acute kidney injury|Acute Kidney Injury]] seen in [[COVID-19]] infection can be from the cytotropic effect (Uptake of [[COVID-19|SARS-Cov-2]] virus into proximal tubule cells is possible explanation for the [[Acute kidney injury|AKI]] seen in [[COVID-19|COVID]] patients<ref name="LiMoore2003">{{cite journal|last1=Li|first1=Wenhui|last2=Moore|first2=Michael J.|last3=Vasilieva|first3=Natalya|last4=Sui|first4=Jianhua|last5=Wong|first5=Swee Kee|last6=Berne|first6=Michael A.|last7=Somasundaran|first7=Mohan|last8=Sullivan|first8=John L.|last9=Luzuriaga|first9=Katherine|last10=Greenough|first10=Thomas C.|last11=Choe|first11=Hyeryun|last12=Farzan|first12=Michael|title=Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus|journal=Nature|volume=426|issue=6965|year=2003|pages=450–454|issn=0028-0836|doi=10.1038/nature02145}}</ref><ref name="RajMou2013">{{cite journal|last1=Raj|first1=V. Stalin|last2=Mou|first2=Huihui|last3=Smits|first3=Saskia L.|last4=Dekkers|first4=Dick H. W.|last5=Müller|first5=Marcel A.|last6=Dijkman|first6=Ronald|last7=Muth|first7=Doreen|last8=Demmers|first8=Jeroen A. A.|last9=Zaki|first9=Ali|last10=Fouchier|first10=Ron A. M.|last11=Thiel|first11=Volker|last12=Drosten|first12=Christian|last13=Rottier|first13=Peter J. M.|last14=Osterhaus|first14=Albert D. M. E.|last15=Bosch|first15=Berend Jan|last16=Haagmans|first16=Bart L.|title=Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC|journal=Nature|volume=495|issue=7440|year=2013|pages=251–254|issn=0028-0836|doi=10.1038/nature12005}}</ref>) of the viral particles as well as systemic inflammatory response induced by the cytokines. Patients admitted with severe disease, [[acute respiratory distress syndrome]] ([[Acute respiratory distress syndrome|ARDS]]) or in patients admitted to ICU have a higher incidence of [[Acute kidney injury|AKI]] . <ref name="ZhouYu2020">{{cite journal|last1=Zhou|first1=Fei|last2=Yu|first2=Ting|last3=Du|first3=Ronghui|last4=Fan|first4=Guohui|last5=Liu|first5=Ying|last6=Liu|first6=Zhibo|last7=Xiang|first7=Jie|last8=Wang|first8=Yeming|last9=Song|first9=Bin|last10=Gu|first10=Xiaoying|last11=Guan|first11=Lulu|last12=Wei|first12=Yuan|last13=Li|first13=Hui|last14=Wu|first14=Xudong|last15=Xu|first15=Jiuyang|last16=Tu|first16=Shengjin|last17=Zhang|first17=Yi|last18=Chen|first18=Hua|last19=Cao|first19=Bin|title=Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study|journal=The Lancet|volume=395|issue=10229|year=2020|pages=1054–1062|issn=01406736|doi=10.1016/S0140-6736(20)30566-3}}</ref>.  Other possible reasons that can play a role in [[Acute kidney injury|AKI]] development, are multi-organ failure resulting in [[acute tubular necrosis]] ([[Acute tubular necrosis|ATN]]), volume reduction causing prerenal [[Acute tubular necrosis|ATN]], high [[fever]], drug toxicity, [[hypotension]], and contrast exposure.
*Pro-inflammatory [[cytokine]] levels are elevated in the [[COVID-19]] infection and there is activation of [[T cell|T-cell]] response.   
*Pro-inflammatory [[cytokine]] levels are elevated in the [[COVID-19]] infection and there is activation of [[T cell|T-cell]] response.   
*There is higher [[cytokine]] levels and  there is occurrence of [[cytokine storm]] in severe cases. In [[cytokine storm]] the, the immune system damages the healthy tissue rather than virus. According to an autopsy report of six patients, the light microscopy indicated CD68+ macrophage infiltration of the tubulointerstitium and severe [[Acute tubular necrosis|ATN]]. The tubules showed [[complement]] 5b-9 deposition in all six cases, but deposition in glomeruli and capillaries were seldom seen. Some [[Cytotoxic T cell|CD8+]] T lymphocyte cells and CD56+ ([[Natural killer cell|natural killer]]) cells were seen in kidney tissue
*There is higher [[cytokine]] levels and  there is occurrence of [[cytokine storm]] in severe cases. In [[cytokine storm]] the, the immune system damages the healthy tissue rather than virus. According to an autopsy report of six patients, the light microscopy indicated CD68+ macrophage infiltration of the tubulointerstitium and severe [[Acute tubular necrosis|ATN]]. The tubules showed [[complement]] 5b-9 deposition in all six cases, but deposition in glomeruli and capillaries were seldom seen. Some [[Cytotoxic T cell|CD8+]] T lymphocyte cells and CD56+ ([[Natural killer cell|natural killer]]) cells were seen in kidney tissue
Line 315: Line 315:
**Microvascular [[thrombosis]] and [[disseminated intravascular coagulation]]( with gut [[ischemia]] ) can occur later in the course of illness. They are characterized by marked increase in the levels of D-[[dimer]] particularly.  [[D-dimer|D dimer]], [[ferritin]], and [[troponin]] should be measured in all patients with severe [[COVID-19]] infection on admission and in those who fail to show any clinical improvement.
**Microvascular [[thrombosis]] and [[disseminated intravascular coagulation]]( with gut [[ischemia]] ) can occur later in the course of illness. They are characterized by marked increase in the levels of D-[[dimer]] particularly.  [[D-dimer|D dimer]], [[ferritin]], and [[troponin]] should be measured in all patients with severe [[COVID-19]] infection on admission and in those who fail to show any clinical improvement.
*High [[C-reactive protein|C-Reactive Protein]] -
*High [[C-reactive protein|C-Reactive Protein]] -
**C‐reactive protein ([[C-reactive protein|CRP]]) was significantly elevated in patients at the time of admission.<ref name="ZhuXu2020">{{cite journal|last1=Zhu|first1=Lan|last2=Xu|first2=Xizhen|last3=Ma|first3=Ke|last4=Yang|first4=Junling|last5=Guan|first5=Hanxiong|last6=Chen|first6=Song|last7=Chen|first7=Zhishui|last8=Chen|first8=Gang|title=Successful recovery of COVID‐19 pneumonia in a renal transplant recipient with long‐term immunosuppression|journal=American Journal of Transplantation|volume=20|issue=7|year=2020|pages=1859–1863|issn=1600-6135|doi=10.1111/ajt.15869}}</ref>  
**C‐reactive protein ([[C-reactive protein|CRP]]) was significantly elevated in patients at the time of admission.<ref name="ZhuXu2020">{{cite journal|last1=Zhu|first1=Lan|last2=Xu|first2=Xizhen|last3=Ma|first3=Ke|last4=Yang|first4=Junling|last5=Guan|first5=Hanxiong|last6=Chen|first6=Song|last7=Chen|first7=Zhishui|last8=Chen|first8=Gang|title=Successful recovery of COVID‐19 pneumonia in a renal transplant recipient with long‐term immunosuppression|journal=American Journal of Transplantation|volume=20|issue=7|year=2020|pages=1859–1863|issn=1600-6135|doi=10.1111/ajt.15869}}</ref>
**The levels of [[C-reactive protein|CRP]] remained elevated during the admission<ref name="ZhuXu2020">{{cite journal|last1=Zhu|first1=Lan|last2=Xu|first2=Xizhen|last3=Ma|first3=Ke|last4=Yang|first4=Junling|last5=Guan|first5=Hanxiong|last6=Chen|first6=Song|last7=Chen|first7=Zhishui|last8=Chen|first8=Gang|title=Successful recovery of COVID‐19 pneumonia in a renal transplant recipient with long‐term immunosuppression|journal=American Journal of Transplantation|volume=20|issue=7|year=2020|pages=1859–1863|issn=1600-6135|doi=10.1111/ajt.15869}}</ref>.
**The levels of [[C-reactive protein|CRP]] remained elevated during the admission<ref name="ZhuXu2020">{{cite journal|last1=Zhu|first1=Lan|last2=Xu|first2=Xizhen|last3=Ma|first3=Ke|last4=Yang|first4=Junling|last5=Guan|first5=Hanxiong|last6=Chen|first6=Song|last7=Chen|first7=Zhishui|last8=Chen|first8=Gang|title=Successful recovery of COVID‐19 pneumonia in a renal transplant recipient with long‐term immunosuppression|journal=American Journal of Transplantation|volume=20|issue=7|year=2020|pages=1859–1863|issn=1600-6135|doi=10.1111/ajt.15869}}</ref>.


Line 415: Line 415:
{{Family tree/end}}
{{Family tree/end}}


 
For general COVID-19 Medical Therapy [[COVID-19 medical therapy|click here]]


==== Chronic Pharmacotherapy ====
==== Chronic Pharmacotherapy ====

Revision as of 23:51, 20 July 2020

For COVID-19 frequently asked inpatient questions, click here
For COVID-19 frequently asked outpatient questions, click here

COVID-19 Microchapters

Home

Long COVID

Frequently Asked Outpatient Questions

Frequently Asked Inpatient Questions

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating COVID-19 from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X-ray

Echocardiography and Ultrasound

CT scan

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Interventions

Surgery

Primary Prevention

Vaccines

Secondary Prevention

Future or Investigational Therapies

Ongoing Clinical Trials

Case Studies

Case #1

COVID-19 Infection in Transplant Patients On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of COVID-19 Infection in Transplant Patients

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on COVID-19 Infection in Transplant Patients

CDC on COVID-19 Infection in Transplant Patients

COVID-19 Infection in Transplant Patients in the news

Blogs on COVID-19 Infection in Transplant Patients

Directions to Hospitals Treating Psoriasis

Risk calculators and risk factors for COVID-19 Infection in Transplant Patients

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Gurmandeep Singh Sandhu,M.B.B.S.[2]

Overview

Renal transplant patients are under immunosuppression to modulate the immune response to graft. Moreover these patients have various underlying chronic kidney diseases and other co-morbidities such as diabetes and hypertension, which can impact the results in COVID-19 infection. Hence these patients are at a higher risk of developing COVID-19 associated complications. The clinical manifestations, treatment, and prognosis of COVID-19 infection may be different from the general population. It is believed that any transplant recipient presented to the infection would result in a high level of cases; however, the risk of the donor to recipient transmission is unknown.

Historical Perspectives

Classification

COVID-19 infection may be classified according to WHO into four subtypes based on severity. Classification of COVID-19 infection in renal transplant patients depends on the severity of COVID-19 manifestations is following:

Mild Disease Symptomatic patients meeting the case definition for COVID-19

No pneumonia

No hypoxia

Moderate Disease Adolescent or adult

Pneumonia with fever, dyspnea, cough, and fast breathing

SpO2 > or = 90%

Child

Signs of non-severe pneumonia

(cough, difficulty breathing, fast breathing or chest indrawing)

Fast breathing(breaths/min)

<2 months: > or = 60

2-11 months: > or = 50

1-5 years: > or = 40

Diagnosis can be made clinically, Chest Imaging (radiograph, CT scan, Ultrasound) may assist in diagnosis.

Severe Disease Severe Pneumonia Adolescent or adult

Signs of Pneumonia plus one of following:

Respiratory rate > 30 breaths/min

Severe Respiratory Distress

SpO2 < 90%

Child

Pneumonia plus at least one of following

Central cyanosis or SpO2 < 90%

Severe respiratory distress (fast breathing, grunting, severe chest indrawing)

General danger signs such as inability to breastfeed or drink, lethargy, or unconsciousness or convulsions

Fast breathing(breaths/min)

<2 months: > or = 60

2-11 months: > or = 50

1-5 years: > or = 40

Diagnosis can be made clinically, Chest Imaging (radiograph, CT scan, Ultrasound) may assist in diagnosis.

Critical Disease Acute Respiratory Distress Syndrome (ARDS) Onset: within 1 week of pneumonia or new worsening respiratory symptoms.

Chest imaging:

(radiograph, CT scan, or lung ultrasound): bilateral opacities,

not related to volume overload, lobar or lung collapse, or nodules

Origin of pulmonary infiltrates:

Respiratory failure not explained by

cardiac failure or fluid overload.

Oxygenation impairment in adults:

-Mild ARDS: 200 mmHg < PaO2/FiO2a ≤ 300 mmHg (with PEEP or CPAP ≥ 5 cmH2O)

-Moderate ARDS: 100 mmHg < PaO2/FiO2 ≤ 200 mmHg (with PEEP ≥ 5 cmH2O)

-Severe ARDS: PaO2/FiO2 ≤ 100 mmHg (with PEEP ≥ 5 cmH2O)

Oxygenation impairment in children: note OI and OSI.

Use OI when available. If PaO2 not available, wean FiO2 to maintain SpO2 ≤ 97% to calculate OSI or SpO2/FiO2 ratio:

• Bilevel (NIV or CPAP) ≥ 5 cmH2O via full face mask: PaO2/FiO2

≤ 300 mmHg or SpO2/FiO2 ≤ 264.

• Mild ARDS (invasively ventilated): 4 ≤ OI < 8 or 5 ≤ OSI < 7.5.

• Moderate ARDS (invasively ventilated): 8 ≤ OI < 16 or 7.5 ≤ OSI < 12.3.

• Severe ARDS (invasively ventilated): OI ≥ 16 or OSI ≥ 12.3.

Sepsis Adults:

Acute life-threatening organ dysfunction caused by a dysregulated host response to suspected or proven infection. Signs of organ dysfunction: altered mental status, difficult or fast breathing, low oxygen saturation, reduced urine output, fast heart rate, weak pulse, cold extremities or low blood pressure, skin mottling, laboratory evidence of coagulopathy, thrombocytopenia, acidosis, high lactate, or hyperbilirubinemia.

Children

Suspected or proven infection and ≥ 2 age-based systemic inflammatory response syndrome (SIRS) criteria, of which one must be abnormal temperature or white blood cell count.

Septic shock Adults:

Persistent hypotension despite volume resuscitation, requiring vasopressors to maintain MAP ≥ 65 mmHg and serum lactate level > 2 mmol/L

Children:

Any hypotension (SBP < 5th centile or > 2 SD below normal for age) or two or three of the following: altered mental status; bradycardia or tachycardia (HR < 90 bpm or > 160 bpm in infants and heart rate < 70 bpm or > 150 bpm in children); prolonged capillary refill (> 2 sec) or weak pulse; fast breathing; mottled or cool skin or petechial or purpuric rash; high lactate; reduced urine output; hyperthermia or hypothermia

Pathophysiology

The normal physiology of in renal transplant patients can be understood as follows to that in general population. However, the renal transplant recipients are at remain at higher risk to catch COVID-19and develop severe complications due to chronic immunosuppressed state which is implicated in various viral infections such as cytomegalovirus, herpes zoster, norovirus infections.[1]

Genetics

  • The Angiotensin-converting enzyme 2 and Dipeptidyl peptidase has been associated with the development of SARS-Cov and MERS-CoV[2][3]
  • Angiotensin-converting enzyme 2 and Dipeptidyl peptidase have been implicated in the uptake of SARS-Cov and MERS-CoV
  • Several studies have indicated that viral S-protein RBD interacts with host ACE2 receptor. S protein changes thus make the human cells permissive to SARS-CoV and SARS-CoV-2 infection ACE2: ACE ratio is higher in the kidneys compared to the respiratory system. (1:1 in the kidneys VS 1:20 in the respiratory system).These receptors are found in the proximal tubules of kidney[2][3]SARS-CoV2 spike(S) protein is cleaved and activated by transmembrane serine protease family (TMPRSS) after attaching to angiotensin-converting enzyme 2 (ACE2) receptors. This allows the virus to release fusion peptide that aides in membrane fusion..
  • There is a possibility of association between MHC class I(HLA A, B & C) with incidence of COVID-19 infection as well as severity of complications
  • HLA-B*46:01 gene product is believed to show lowest binding to SARS-CoV-2 indicating decreased viral presentation to immune system. Whereas HLA-B*15:03 shows increased affinity to SARS-CoV-2[4]leading to higher likelihood in developing immunity.

Associated Conditions

  • Acute Kidney Injury has been reported in patients with COVID-19 infection along with presence of proteinuria, hematuria. In a case observation, 4 out of 7 patients had AKI which may indicate that renal transplant patients are at higher risk AKI on being infected with COVID-19 whereas only 29% AKI was seen in critically ill patients of general population.
  • Acute Kidney Injury seen in COVID-19 infection can be from the cytotropic effect (Uptake of SARS-Cov-2 virus into proximal tubule cells is possible explanation for the AKI seen in COVID patients[2][3]) of the viral particles as well as systemic inflammatory response induced by the cytokines. Patients admitted with severe disease, acute respiratory distress syndrome (ARDS) or in patients admitted to ICU have a higher incidence of AKI . [1]. Other possible reasons that can play a role in AKI development, are multi-organ failure resulting in acute tubular necrosis (ATN), volume reduction causing prerenal ATN, high fever, drug toxicity, hypotension, and contrast exposure.
  • Pro-inflammatory cytokine levels are elevated in the COVID-19 infection and there is activation of T-cell response.
  • There is higher cytokine levels and there is occurrence of cytokine storm in severe cases. In cytokine storm the, the immune system damages the healthy tissue rather than virus. According to an autopsy report of six patients, the light microscopy indicated CD68+ macrophage infiltration of the tubulointerstitium and severe ATN. The tubules showed complement 5b-9 deposition in all six cases, but deposition in glomeruli and capillaries were seldom seen. Some CD8+ T lymphocyte cells and CD56+ (natural killer) cells were seen in kidney tissue

Causes

Life Threatening Causes


Differentiating from other Diseases

  • As the general presentation of COVID-19 is similar in general population and renal transplant patients, it should be differentiated from other diseases presenting with cough, fever, shortness of breath, and tachypnea.
    • To review the differential diagnosis, click here

Epidemiology and Demographics

Incidence

  • Due to the lack of broad screening that includes the general population (including asymptomatic patients) and the lack of PCR and antibody tests with acceptable sensitivity and specificity, an accurate estimate of the incidence rate of coronavirus disease 2019 (COVID-19) cannot be accurately estimated.
  • Data indicates that the rate of severe complications of COVID-19 is almost 25%, and kidney is also one of the main organs affected in severe illness.[6]. The risk is further increased in patients having chronic kidney disease(CKD), patients on chronic replacement therapies, and patients with kidney transplants.[7]
  • AKI is seen in 5-15% of the SARS-CoV and MERS-CoV infection[7]

Prevalence

Case-fatality rate

  • Due to limited testing of asymptomatic individuals, the potential inaccuracies of early PCR tests and antibody tests, the inconsistent reporting and lack of organized data, an accurate case-fatality rate of COVID-19 has yet to be established.
  • According to analysis of recent studies[8][9][10] [11] [12] [13] [14] [15][16], a fatality rate of 17.4% (4/23) in renal transplant patients was reported

Age

  • In general population, COVID-19 associated AKI has higher incidence in elderly.[18]

Gender

  • Male are more commonly affected by COVID-19 than female.
  • Female dying from COVID-19 are generally elder than men(median age: 82 vs. 79 years for women vs. men, respectively).[19]

Race

  • According to study done in New York, 14 recipients affected by COVID-19, (39%) were black, and 15 recipients (42%) were Hispanic.

Risk Factors

Common risk factors in the development of transplant patients to COVID-19 are:

Screening

According to one of the COVID-19 Rapid Guidelines for renal transplant patients:

 
 
 
 
 
 
 
 
 
Patient presents with Sore throat,Dry cough or Fever
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Dysnea, RR>30/min, SpO2<93%
 
If Present Then refer for admission
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Creatinine is raised but no Lymphopenia or No Abnormality on CT chest
 
 
 
If not, check Creatinine, C-RP, CXR & CT chest
 
 
 
Lymphopenia but Creatinine normal and Ct chest normal
 
Admit in usual ward and evaluate Lymphopenia
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Evaluate the Causes of rise in creatinine
 
 
 
Is Xray positive for COVID-19?
 
 
If No, then Do CT Chest
 
If CT Chest is negative then refer patient for Home Care, Medical Treatment, Diagnostic Test, and Daily Follow-ups
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If Chest Xray or CT chest is indicative of COVID-19 infection: Admit the patient
 
 
 
 
 
 
 
 
 

Screening for AKI

Serial monitoring of kidney function tests should be considered in renal transplant patients'

Gut Ischemia, coagulopathies, and disseminated intravascular coagulopation have been seen later in the course of illness[22]

Natural History, Complications and Prognosis

The majority of renal transplant recipients with COVID-19 present with same course of infection as in general population[23]. The clinical features in renal transplant recipients may be atypical due to chronic state of suppressed immune system and other chronic co-morbidities in transplant patients[1][24][25]. Early clinical features include cough, fever, fatigue, diarrhea, sore throat, and shortness of breath. If left untreated, COVID-19 in transplant recipients may progress to develop dysnea, hypoxemia, oliguria, confusion, fluid retention and pro coagulative state[23]. Common complications of COVID-19 in renal patients may include Pneumonia, Acute Respiratory Distress Syndrome, Acute Kidney Injury and Disseminated Intravascular Coagulation[26][23][22]. Prognosis is generally worse than the prognosis in general population due to underlying immunosuppression and chronic co morbidities (eg. Hypertension, Diabetes, Chronic renal Failure etc, and the mortality rate in renal transplant patients with COVID-19 has been reported to be higher than the general population[25][24][1].

Diagnosis

Diagnosis of Choice

  • Renal transplant patients present with similar CT an Chest X-Ray finding which are seen in the general population, although the features of COVID-19 infection may be atypical in such patients.
  • Renal Transplant patients who develop AKI can be diagnosed using KDIGO criteria:
    • Increase in S. Creatinine: ≥0.3 mg/dl (≥26.5 μmol/l) within 48 hours
    • Increase in S. Creatinine: ≥1.5 times baseline within the previous 7 days
    • Urine volume < 0.5 ml/kg/h for >6 hours

Symptoms

Presenting symptoms in renal transplant patients are similar to those of non-renal transplant patients. Further symptomology depends on the clinical complications that develop due to COVID-19.

Further classification of patients into the severity index can be done using the WHO guidelines.[27]

Physical Examinationin

Physical examination of COVID-19 in renal transplant patients are similar to ones seen in general population.: COVID Physical Exam


If the patient develops Acute Kidney physical examination is remarkable for:


Past Medical History

Laboratory Findings


If the renal transplant patients reports AKI then following laboratory findings can be done:

Electrocardiogram

X Ray

  • X-ray findings in the renal transplant patients were similar to the findings seen in the general population.
  • To view the x-ray finidings on COVID-19, click here.

Echocardiography or Ultrasound

CT

  • CT scan finding in renal transplant patients infected with COVID-19 were similar to those in the general population.
  • To view the CT scan findings on COVID-19, click here.

MRI

Other Imaging Findings

  • To view other imaging findings on COVID-19, click here.

Other Diagnostic Studies

  • To view other diagnostic studies for COVID-19, click here.

Treatment

Medical Therapy

Acute Pharmacotherapy

Currently, there are a variable number of protocols that have been described for the management of COVID-19 in renal transplant patients:-

According to the British Transplantation Society Guideline[28]:-


 
 
 
 
 
 
 
Follow local guidelines for use of PPE
• Do the general assessment of the patient and swab for SARS-Cov-2
• Exclude other causes like CMV, pneumocystis, community or hospital acquired pneumonia, influenza, urinary sepsis, lymphoma and fluid overload)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If the patient doesn't require hospitalization

• Stop antiproliferative agents (MMF/azathioprine)
• Review total burden of immunosuppression and consider reduction of CNI
• High or increased dose steroid is NOT recommended at this stage
• Patients should self isolate in line with national guidance
• Closely monitor patients remotely for change in symptoms
• Consider restarting immunosuppression 14 days after onset of symptoms if symptom free in absence of anti-pyretics for minimum of 3 days

• Consider early monitoring of graft function when safe to do so and risk of transmissionto others is low
 
 
 
 
 
 
 
 
If the patient is deteriorates or requires ventilatory support

• Stop antiproliferative agents (MMF/azathioprine)
• Dramatically reduce or stop CNI
• Consider high dose steroids in discussion with ITU team
• Ventilatory support in line with local or national guidance

• Adjunctive support or antivirals in line with local practice or clinical trials
 
 
 
 
 
 
 
 
 
If the patient is unwell and requires admission

• Stop antiproliferative agents (MMF/azathioprine)
• Consider reducing or stopping CNI
• Consider increasing steroids if currently taking them.
• There is no evidence for benefit of high dose steroids at this stage
• Oxygen therapy to achieve saturations over 94% (unless COPD)
• Regular observations, especially saturations, to monitor for rapid deterioration
• Conservative fluid administration
• Consider adjunctive antibiotics if superadded bacterial infection is suspected

• Early discussion of ceilings of care
 
 
 
 
 
 

According to a protocol described in Iranian Medical Journal[29]

 
 
 
Admitted Patients
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
O2 Saturation <93%
 
 
 
O2 saturation >93%
 
 
S. Creaitnine is raised,Then Consider Kidney Biospy
 
 
If there are signs of kidney rejection
• Stop Anti Metabolite Drug
• Prednisolone: 20 mg/d
• Cyclosporine Trough Level: 75-150ng/ml
• Tacrolimus Trough Level: 4 to 6 ng/mL
• IVIG: 1-2 g/kg Divided Doses in 5 Days
• Anti Viral Therapy According to Protocol
• Azithromycin: 500 mg Stat and 250 mg
• Daily for 4 Days
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
• Stop Anti Metabolite Drug
• Stop CNI
• IV Methyl Prednisolone: 40mg/d
• IVIG: 1-2 g/kg Divided Doses in 5 Days
• Anti Viral Therapy According to Protocol
• Azithromycin: 500 mg Stat and 250 mg
• Daily for 4 Days
 
 
 
• If S.Creatinine is Normal
• Stop Anti Metabolite Drug
• Prednisolone: 20 mg/d
• Cyclosporine Trough Level: 75-150ng/ml
• Tacrolimus Trough Level: 4 to 6 ng/mL
• Anti Viral Therapy According to Protocol
• Azithromycin: 500 mg Stat and 250 mg
• Daily for 4 Days
 
 
If No Sign of rejection then same protocol as for Normal Serum Creatinine and O2 sat. >93%
 
 

For general COVID-19 Medical Therapy click here

Chronic Pharmacotherapy

In renal transplant patients, the immune responses are altered, especially the T cell response, due to generalized immunosuppression. Due to recent timeframe of outbreak of COVID-19 and insufficient scientific evidence, there is limited evidence on decreasing or changing the pattern of immunosuppression in renal transplant patients who have been infected with COVID-19.

Commonly followed protocols for the used immuno-suppressant drugs is as follows:-

    • Low doses of tacrolimus can be given but more evidence is required.[32]
    • COVID-19 infection has been found to cause cytokine storm and inflammation due to antiviral immune response, hence trials of anti-interleukin 6 monoclonal antibody Tocilizumab and continuing steroids in infected patients has been considered.
  • Cyclosporine

Surgery and Device Based Therapy

Currently there are no surgical intervention required for COVID-19 infection in renal transplant patients.

Transplantation

  • The risk of the donor to recipient transmission is unknown.
  • The chances of a donor to recipient infection might be affected by exposure of the donor, the infectivity of the donor during the incubation period, and the degree of viremia as well as the viability of virus in the specific organ system. An avid knowledge of local epidemiology is required to identify donors and recipients who may recently be exposed. One method is to have both donor and recipient practice strict social distancing i.e. 2-week home segregation prior to transplant and PCR testing for both individuals, before transplant[34]. The reason for swabbing at the end of the segregation period is to screen asymptomatic shedders.


  • In spite of the conceivable negative outcomes, temporary interruption of kidney transplantation might be needed in regions where the rate of infection is high.. [35]
  • If a life-saving procedure needs to be performed, then appropriate assessment of infection in donor and recipient must be done along with appropriate informed consent.
  • If a transplant candidate is found to be infected with COVID-19, the transplant should be delayed until the patient shows clinical improvement as well as no viral detection. Viral shedding for an increased duration of time has been reported[1].
    • Patients should be tested 10-14 days after symptom onset and only once all the symptoms have resolved.
    • Patients should have 2 negative PCRs at least 24hrs apart

Primary Prevention

  • The kidney transplant population must comply with the recommended measures of protection in the general population. Physicians can recommend the use of a mask on an individual basis, especially when the patient goes to health center or other place with agglomeration. People who show symptoms of being infected with SARS-CoV-2 should wear masks to prevent the spread of the disease to others..
  • It is prudent to approve a sick leave in patients whose profession involves a high hazard for disease.[36]
  • It is recommended to screen kidney transplant patients through teleconsultation so as to decrease the time spent in healthcare centers and decrease the risk of infection [36]
  • Maintenance of general hygiene. Washing your hands as often as possible with cleanser and water, or with a alcohol based hand sanitizer (60% alc), particularly: after utilizing the restroom, before eating, in the wake of blowing, coughing or sneezing and after direct contact with patient or their surroundings. Abstain from touching your eyes, nose and mouth before washing your hands.[36]
  • Regular cleaning of home with disinfection of objects and surfaces.[36]
  • Keep a distance of at least two metres from people with general symptoms such as fever, cough, malaise, sore throat or dyspnea). Abstain from sharing personal belongings.[36]
  • During the lockdown circumstance you should stay at home aside from the specified exemptions, as indicated by the standards built up by the political and wellbeing specialists. Telephone the kidney transplant facility at your referral community or the telephone numbers approved by the wellbeing specialists.[36]
  • Attempt to follow a right eating routine. Abstain from smoking and liquor. These substances weaken the immune system, and increase the risk of infectious diseases.[36]

Secondary Prevention

All kidney transplant patients with suspected symptoms of COVID-19 are advised to contact their healthcare provider (ideally by phone), to discuss the full course of their treatment and other chronic conditions that they are having. Depending upon the symptoms :-

  • Mild symptoms ie
    • without Dyspnea or Tachypnea
    • Temperature <38°C
    • Kidney receptor with adequate functional reserves
      • The patient can be asked to remain in contact via teleconsultation to have the diagnostic tests performed, monitor the symptoms and communicate alarming to the transplant team every 24–48h.
  • Moderate/Severe symptoms
    • Temperature >38°C
    • Presence of Dyspnea
    • Presence of Tachypnea
    • Fragile Kidney receptor
      • Patient can be asked to report to Emergency Department for clinical evaluation..[36]

Cost Effectiveness of Therapy

Currently various investigational and experimental pharmacological therapies are being tested for COVID-19 treatment. The cost of treatment generally depends on the multitude of COVID-19 complications that an individual develops.

Future or Investigational Therapies

Various pharmacological therapies are currently under investigation as potentials to treat COVID-19

For detailed information click here

References

  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 Zhou, Fei; Yu, Ting; Du, Ronghui; Fan, Guohui; Liu, Ying; Liu, Zhibo; Xiang, Jie; Wang, Yeming; Song, Bin; Gu, Xiaoying; Guan, Lulu; Wei, Yuan; Li, Hui; Wu, Xudong; Xu, Jiuyang; Tu, Shengjin; Zhang, Yi; Chen, Hua; Cao, Bin (2020). "Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study". The Lancet. 395 (10229): 1054–1062. doi:10.1016/S0140-6736(20)30566-3. ISSN 0140-6736.
  2. 2.0 2.1 2.2 Li, Wenhui; Moore, Michael J.; Vasilieva, Natalya; Sui, Jianhua; Wong, Swee Kee; Berne, Michael A.; Somasundaran, Mohan; Sullivan, John L.; Luzuriaga, Katherine; Greenough, Thomas C.; Choe, Hyeryun; Farzan, Michael (2003). "Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus". Nature. 426 (6965): 450–454. doi:10.1038/nature02145. ISSN 0028-0836.
  3. 3.0 3.1 3.2 Raj, V. Stalin; Mou, Huihui; Smits, Saskia L.; Dekkers, Dick H. W.; Müller, Marcel A.; Dijkman, Ronald; Muth, Doreen; Demmers, Jeroen A. A.; Zaki, Ali; Fouchier, Ron A. M.; Thiel, Volker; Drosten, Christian; Rottier, Peter J. M.; Osterhaus, Albert D. M. E.; Bosch, Berend Jan; Haagmans, Bart L. (2013). "Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC". Nature. 495 (7440): 251–254. doi:10.1038/nature12005. ISSN 0028-0836.
  4. Nguyen, Austin; David, Julianne K; Maden, Sean K; Wood, Mary A; Weeder, Benjamin R; Nellore, Abhinav; Thompson, Reid F (2020). doi:10.1101/2020.03.22.20040600. Missing or empty |title= (help)
  5. 5.0 5.1 Wang, Dawei; Hu, Bo; Hu, Chang; Zhu, Fangfang; Liu, Xing; Zhang, Jing; Wang, Binbin; Xiang, Hui; Cheng, Zhenshun; Xiong, Yong; Zhao, Yan; Li, Yirong; Wang, Xinghuan; Peng, Zhiyong (2020). "Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China". JAMA. 323 (11): 1061. doi:10.1001/jama.2020.1585. ISSN 0098-7484.
  6. Yang, Xiaobo; Yu, Yuan; Xu, Jiqian; Shu, Huaqing; Xia, Jia'an; Liu, Hong; Wu, Yongran; Zhang, Lu; Yu, Zhui; Fang, Minghao; Yu, Ting; Wang, Yaxin; Pan, Shangwen; Zou, Xiaojing; Yuan, Shiying; Shang, You (2020). "Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study". The Lancet Respiratory Medicine. 8 (5): 475–481. doi:10.1016/S2213-2600(20)30079-5. ISSN 2213-2600.
  7. 7.0 7.1 Naicker, Saraladevi; Yang, Chih-Wei; Hwang, Shang-Jyh; Liu, Bi-Cheng; Chen, Jiang-Hua; Jha, Vivekanand (2020). "The Novel Coronavirus 2019 epidemic and kidneys". Kidney International. 97 (5): 824–828. doi:10.1016/j.kint.2020.03.001. ISSN 0085-2538.
  8. 8.0 8.1 8.2 Bussalino, Elisabetta; De Maria, Andrea; Russo, Rodolfo; Paoletti, Ernesto (2020). "Immunosuppressive therapy maintenance in a kidney transplant recipient with SARS‐CoV‐2 pneumonia: A case report". American Journal of Transplantation. 20 (7): 1922–1924. doi:10.1111/ajt.15920. ISSN 1600-6135.
  9. 9.0 9.1 9.2 Seminari, Elena; Colaneri, Marta; Sambo, Margherita; Gallazzi, Ilaria; Di Matteo, Angela; Roda, Silvia; Bruno, Raffaele; Mondelli, Mario U.; Brunetti, Enrico; Maiocchi, Laura; Zuccaro, Valentina; Pagnucco, Layla; Mariani, Bianca; Ludovisi, Serena; Lissandrin, Raffaella; Parisi, Aldo; Sacchi, Paolo; Patruno, Savino F. A.; Michelone, Giuseppe; Gulminetti, Roberto; Zanaboni, Domenico; Novati, Stefano; Maserati, Renato; Orsolini, Paolo; Vecchia, Marco; Sciarra, Marco; Asperges, Erika; Di Filippo, Alessandro; Biscarini, Simona; Lupi, Matteo; Pieri, Teresa C.; Sachs, Michele; Valsecchi, Pietro; Perlini, Stefano; Alfano, Claudia; Bonzano, Marco; Briganti, Federica; Crescenzi, Giuseppe; Falchi, Anna G.; Guarnone, Roberta; Guglielmana, Barbara; Maggi, Elena; Martino, Ilaria; Pettenazza, Pietro; Pioli di Marco, Serena; Quaglia, Federica; Sabena, Anna; Salinaro, Francesco; Speciale, Francesco; Zunino, Ilaria; De Lorenzo, Marzia; Secco, Gianmarco; Dimitry, Lorenzo; Cappa, Giovanni; Maisak, Igor; Chiodi, Benedetta; Sciarrini, Massimiliano; Barcella, Bruno; Resta, Flavia; Moroni, Luca; Vezzoni, Giulia; Scattaglia, Lorenzo; Boscolo, Elisa; Zattera, Caterina; Fidel, Tassi M.; Vincenzo, Capozza; Vignaroli, Damiano; Bazzini, Marco; Iotti, Giorgio; Mojoli, Francesco; Belliato, Mirko; Perotti, Luciano; Mongodi, Silvia; Tavazzi, Guido; Marseglia, Gianluigi; Licari, Amelia; Brambilla, Ilaria; Daniela, Barbarini; Antonella, Bruno; Patrizia, Cambieri; Giulia, Campanini; Giuditta, Comolli; Marta, Corbella; Rossana, Daturi; Milena, Furione; Bianca, Mariani; Roberta, Maserati; Enza, Monzillo; Stefania, Paolucci; Maurizio, Parea; Elena, Percivalle; Antonio, Piralla; Francesca, Rovida; Antonella, Sarasini; Maurizio, Zavattoni; Guy, Adzasehoun; Laura, Bellotti; Ermanna, Cabano; Giuliana, Casali; Luca, Dossena; Gabriella, Frisco; Gabriella, Garbagnoli; Alessia, Girello; Viviana, Landini; Claudia, Lucchelli; Valentina, Maliardi; Simona, Pezzaia; Marta, Premoli; Alice, Bonetti; Giacomo, Caneva; Irene, Cassaniti; Alfonso, Corcione; Di Martino, Raffella; Di Napoli, Annapia; Alessandro, Ferrari; Guglielmo, Ferrari; Loretta, Fiorina; Federica, Giardina; Alessandra, Mercato; Federica, Novazzi; Giacomo, Ratano; Beatrice, Rossi; Maria, Sciabica I.; Monica, Tallarita; Edoardo, Vecchio N.; Cerino, Antonella; Varchetta, Stefania; Oliviero, Barbara; Mantovani, Stefania; Mele, Dalila; Calvi, Monica; Tizzonis, Michela; Nicora, Carlo; Triarico, Antonio; Petronella, Vincenzo; Marena, Carlo; Muzzi, Alba; Lago, Paolo; Comandatore, Francesco; Bissignandi, Gherard; Gaiarsa, Stefano; Rettani, Marco; Band, Claudio (2020). "SARS Cov‐2 infection in a renal‐transplanted patient: A case report". American Journal of Transplantation. 20 (7): 1882–1884. doi:10.1111/ajt.15902. ISSN 1600-6135.
  10. 10.0 10.1 10.2 Marx, David; Moulin, Bruno; Fafi‐Kremer, Samira; Benotmane, Ilies; Gautier, Gabriela; Perrin, Peggy; Caillard, Sophie (2020). "First case of COVID‐19 in a kidney transplant recipient treated with belatacept". American Journal of Transplantation. 20 (7): 1944–1946. doi:10.1111/ajt.15919. ISSN 1600-6135.
  11. 11.0 11.1 11.2 Gandolfini, Ilaria; Delsante, Marco; Fiaccadori, Enrico; Zaza, Gianluigi; Manenti, Lucio; Degli Antoni, Anna; Peruzzi, Licia; Riella, Leonardo V.; Cravedi, Paolo; Maggiore, Umberto (2020). "COVID‐19 in kidney transplant recipients". American Journal of Transplantation. 20 (7): 1941–1943. doi:10.1111/ajt.15891. ISSN 1600-6135.
  12. 12.0 12.1 12.2 Guillen, Elena; Pineiro, Gaston J.; Revuelta, Ignacio; Rodriguez, Diana; Bodro, Marta; Moreno, Asunción; Campistol, Josep M.; Diekmann, Fritz; Ventura‐Aguiar, Pedro (2020). "Case report of COVID‐19 in a kidney transplant recipient: Does immunosuppression alter the clinical presentation?". American Journal of Transplantation. 20 (7): 1875–1878. doi:10.1111/ajt.15874. ISSN 1600-6135.
  13. 13.0 13.1 . doi:10.1016/ S2213-2600(20)30182-X Check |doi= value (help). Missing or empty |title= (help)
  14. 14.0 14.1 14.2 Haberal, Mehmet (2020). "COVID-19 UPDATE". Experimental and Clinical Transplantation. 18 (2): 139–140. doi:10.6002/ect.2020.000e. ISSN 1304-0855.
  15. 15.0 15.1 15.2 "bts.org.uk" (PDF).
  16. 16.0 16.1 16.2 "www.europeanurology.com".
  17. . doi:10.1016/ S2213-2600(20)30182-X Check |doi= value (help). Missing or empty |title= (help)
  18. Pei, Guangchang; Zhang, Zhiguo; Peng, Jing; Liu, Liu; Zhang, Chunxiu; Yu, Chong; Ma, Zufu; Huang, Yi; Liu, Wei; Yao, Ying; Zeng, Rui; Xu, Gang (2020). "Renal Involvement and Early Prognosis in Patients with COVID-19 Pneumonia". Journal of the American Society of Nephrology. 31 (6): 1157–1165. doi:10.1681/ASN.2020030276. ISSN 1046-6673.
  19. Sharma, Garima; Volgman, Annabelle Santos; Michos, Erin D. (2020). "Sex Differences in Mortality From COVID-19 Pandemic". JACC: Case Reports. doi:10.1016/j.jaccas.2020.04.027. ISSN 2666-0849.
  20. 20.0 20.1 20.2 Akalin, Enver; Azzi, Yorg; Bartash, Rachel; Seethamraju, Harish; Parides, Michael; Hemmige, Vagish; Ross, Michael; Forest, Stefanie; Goldstein, Yitz D.; Ajaimy, Maria; Liriano-Ward, Luz; Pynadath, Cindy; Loarte-Campos, Pablo; Nandigam, Purna B.; Graham, Jay; Le, Marie; Rocca, Juan; Kinkhabwala, Milan (2020). "Covid-19 and Kidney Transplantation". New England Journal of Medicine. 382 (25): 2475–2477. doi:10.1056/NEJMc2011117. ISSN 0028-4793.
  21. 21.0 21.1 Nacif, Lucas Souto; Zanini, Leonardo Y.; Waisberg, Daniel R.; Pinheiro, Rafael S.; Galvão, Flávio; Andraus, Wellington; D'Albuquerque, Luiz Carneiro (2020). "COVID-19 in solid organ transplantation patients: A systematic review". Clinics. 75. doi:10.6061/clinics/2020/e1983. ISSN 1807-5932.
  22. 22.0 22.1 Banerjee, Debasish; Popoola, Joyce; Shah, Sapna; Ster, Irina Chis; Quan, Virginia; Phanish, Mysore (2020). "COVID-19 infection in kidney transplant recipients". Kidney International. 97 (6): 1076–1082. doi:10.1016/j.kint.2020.03.018. ISSN 0085-2538.
  23. 23.0 23.1 23.2 Invalid <ref> tag; no text was provided for refs named BanerjeePopoola20202
  24. 24.0 24.1 Invalid <ref> tag; no text was provided for refs named pmid32171076
  25. 25.0 25.1 25.2 25.3 25.4 Zhu, Lan; Xu, Xizhen; Ma, Ke; Yang, Junling; Guan, Hanxiong; Chen, Song; Chen, Zhishui; Chen, Gang (2020). "Successful recovery of COVID‐19 pneumonia in a renal transplant recipient with long‐term immunosuppression". American Journal of Transplantation. 20 (7): 1859–1863. doi:10.1111/ajt.15869. ISSN 1600-6135.
  26. Invalid <ref> tag; no text was provided for refs named WuMcGoogan2020
  27. "Clinical management of COVID-19".
  28. "bts.org.uk" (PDF).
  29. "Samavat".
  30. Zhu, Lan; Xu, Xizhen; Ma, Ke; Yang, Junling; Guan, Hanxiong; Chen, Song; Chen, Zhishui; Chen, Gang (2020). "Successful recovery of COVID‐19 pneumonia in a renal transplant recipient with long‐term immunosuppression". American Journal of Transplantation. doi:10.1111/ajt.15869. ISSN 1600-6135.
  31. 31.0 31.1 Banerjee D, Popoola J, Shah S, Ster IC, Quan V, Phanish M (June 2020). "COVID-19 infection in kidney transplant recipients". Kidney Int. 97 (6): 1076–1082. doi:10.1016/j.kint.2020.03.018. PMC 7142878 Check |pmc= value (help). PMID 32354637 Check |pmid= value (help).
  32. 32.0 32.1 32.2 32.3 32.4 Banerjee D, Popoola J, Shah S, Ster IC, Quan V, Phanish M (June 2020). "COVID-19 infection in kidney transplant recipients". Kidney Int. 97 (6): 1076–1082. doi:10.1016/j.kint.2020.03.018. PMC 7142878 Check |pmc= value (help). PMID 32354637 Check |pmid= value (help).
  33. "www.massgeneral.org" (PDF).
  34. Ho, Quan Yao; Chung, Shimin J.; Gan, Valerie H. L.; Ng, Lay Guat; Tan, Ban Hock; Kee, Terence Y. S. (2020). "High‐immunological risk living donor renal transplant during the COVID‐19 outbreak: Uncertainties and ethical dilemmas". American Journal of Transplantation. 20 (7): 1949–1951. doi:10.1111/ajt.15949. ISSN 1600-6135.
  35. Michaels, Marian G.; La Hoz, Ricardo M.; Danziger-Isakov, Lara; Blumberg, Emily A.; Kumar, Deepali; Green, Michael; Pruett, Timothy L.; Wolfe, Cameron R. (2020). "Coronavirus disease 2019: Implications of emerging infections for transplantation". American Journal of Transplantation. doi:10.1111/ajt.15832. ISSN 1600-6135.
  36. 36.0 36.1 36.2 36.3 36.4 36.5 36.6 36.7 López, Verónica; Vázquez, Teresa; Alonso-Titos, Juana; Cabello, Mercedes; Alonso, Angel; Beneyto, Isabel; Crespo, Marta; Díaz-Corte, Carmen; Franco, Antonio; González-Roncero, Francisco; Gutiérrez, Elena; Guirado, Luis; Jiménez, Carlos; Jironda, Cristina; Lauzurica, Ricardo; Llorente, Santiago; Mazuecos, Auxiliadora; Paul, Javier; Rodríguez-Benot, Alberto; Ruiz, Juan Carlos; Sánchez-Fructuoso, Ana; Sola, Eugenia; Torregrosa, Vicente; Zárraga, Sofía; Hernández, Domingo (2020). "Recommendations on management of the SARS-CoV-2 coronavirus pandemic (Covid-19) in kidney transplant patients". Nefrología (English Edition). doi:10.1016/j.nefroe.2020.03.017. ISSN 2013-2514.