Ventricular tachycardia treatment: Difference between revisions
(/* Guidelines in Ventricular Tachycardia Treatment{{cite journal| author=Zipes DP, Camm AJ, Borggrefe M, Buxton AE, Chaitman B, Fromer M et al.| title=ACC/AHA/ESC 2006 Guidelines for Management of Patients With Ventricular Arrhythmias and the Prevent) |
No edit summary |
||
Line 1: | Line 1: | ||
{{ | {{Ventricular tachycardia}} | ||
{{CMG}}; '''Associate Editor-in Chief''': Avirup Guha, M.B.B.S.[mailto:avirup.guha@gmail.com] | |||
{{CMG}} | |||
'''Associate Editor-in Chief''': Avirup Guha, M.B.B.S.[mailto:avirup.guha@gmail.com] | |||
==Treatment of [[ventricular tachycardia]]== | ==Treatment of [[ventricular tachycardia]]== |
Revision as of 18:45, 15 September 2011
Ventricular tachycardia Microchapters |
Differentiating Ventricular Tachycardia from other Disorders |
---|
Diagnosis |
Treatment |
Case Studies |
Ventricular tachycardia treatment On the Web |
Risk calculators and risk factors for Ventricular tachycardia treatment |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor-in Chief: Avirup Guha, M.B.B.S.[2]
Treatment of ventricular tachycardia
Therapy may be directed at either terminating an episode of the arrhythmia or for suppressing a future episode from occurring. The treatment is tailored to the specific patient, with regard to how well the individual tolerates episodes of ventricular tachycardia, how frequently episodes occur, their comorbidities, and their wishes.
Electrical Cardioversion / Defibrillation
It is usually possible to terminate a VT episode with a direct current shock across the heart. This is ideally synchronised to the patient's heartbeat. As it is quite uncomfortable, shocks should be delivered only to an unconscious or sedated patient. A patient with pulseless VT will be unconscious and treated as an emergency on a cardiac arrest protocol. Elective cardioversion is usually performed in controlled circumstances with anaesthetic and airway support.
The shock may be delivered to the outside of the chest using an external defibrillator, or internally to the heart by an implantable cardioverter-defibrillator (ICD) if one has previously been inserted.
An ICD may also be set to attempt to overdrive pace the ventricle. Pacing the ventricle at a rate faster than the underlying tachycardia can sometimes be effective in terminating the rhythm. If this fails after a short trial, the ICD will usually stop pacing, charge up and deliver a defibrillation grade shock.
Antiarrhythmic drug therapy
Drugs such as amiodarone, epinephrine and vasopressin may be used in addition to [defibrillation] to terminate VT while the underlying cause of the VT can be determined. Possible causes or contributing factors to VT can be remembered as the six H's and five T's: Hypovolemia, Hypoxia, Hydrogen ion (acidosis), Hypo- or Hyperglycemia, Hypothermia; and Toxins, Tamponade (cardiac), Tension pneumothorax, Thrombosis, Trauma.
Long term anti-arrhythmic therapy may be indicated to prevent recurrence of VT. Beta-blockers and a number of class III anti-arrhythmics are commonly used.
For some of the rare congenital syndromes of VT, other drugs, and sometimes even catheter ablation therapy may be useful.
The implantation of an ICD is more effective than drug therapy for prevention of sudden cardiac death due to VT and VF, but may be constrained by cost issues, and well as patient co-morbidities and patient preference.
Guidelines in Ventricular Tachycardia Treatment[1]
“ |
Recommendations in Ablation of Ventricular TachycardiaClass I1. Ablation is indicated in patients who are otherwise at low risk for Sudden Cardiac Death(SCD) and have sustained predominantly monomorphic ventricular tachycardia that is drug resistant, who are drug intolerant, or who do not wish long-term drug therapy. (Level of Evidence: C) 2. Ablation is indicated in patients with Bundle branch reentrant ventricular tachycardia. (Level of Evidence: C) 3. Ablation is indicated as adjunctive therapy in patients with an Implantable cardioverter-defibrillator(ICD) who are receiving multiple shocks as a result of Sustained VT that is not manageable by reprogramming or changing drug therapy or who do not wish long-term drug therapy. (Level of Evidence: C)[2][3] 4. Ablation is indicated in patients with WPW syndrome resuscitated from sudden cardiac arrest due to AF and rapid conduction over the accessory pathway causing VF. (Level of Evidence: B)[4] Class IIa1. Ablation can be useful therapy in patients who are otherwise at low risk for SCD and have symptomatic nonsustained monomorphic VT that is drug resistant, who are drug intolerant or who do not wish long-term drug therapy. (Level of Evidence: C) 2. Ablation can be useful therapy in patients who are otherwise at low risk for SCD and have frequent symptomatic predominantly monomorphic PVCs that are drug resistant or who are drug intolerant or who do not wish long-term drug therapy. (Level of Evidence: C) 3. Ablation can be useful in symptomatic patients with WPW syndrome who have accessory pathways with refractory periods less than 240 ms in duration. (Level of Evidence: B[4] Class IIb1. Ablation of Purkinje fiber potentials may be considered in patients with ventricular arrhythmia storm consistently provoked by PVCs of similar morphology. (Level of Evidence: C)[5] 2. Ablation of asymptomatic PVCs may be considered when the PVCs are very frequent to avoid or treat tachycardia-induced cardiomyopathy. (Level of Evidence: C)[6] Class IIIAblation of asymptomatic relatively infrequent PVCs is not indicated. (Level of Evidence: C) |
” |
References
- ↑ Zipes DP, Camm AJ, Borggrefe M, Buxton AE, Chaitman B, Fromer M; et al. (2006). "ACC/AHA/ESC 2006 Guidelines for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death: a report of the American College of Cardiology/American Heart Association Task Force and the European Society of Cardiology Committee for Practice Guidelines (writing committee to develop Guidelines for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death): developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society". Circulation. 114 (10): e385–484. doi:10.1161/CIRCULATIONAHA.106.178233. PMID 16935995.
- ↑ Bhandari AK, Shapiro WA, Morady F, Shen EN, Mason J, Scheinman MM (1985). "Electrophysiologic testing in patients with the long QT syndrome". Circulation. 71 (1): 63–71. PMID 2856866.
- ↑ Silva RM, Mont L, Nava S, Rojel U, Matas M, Brugada J (2004). "Radiofrequency catheter ablation for arrhythmic storm in patients with an implantable cardioverter defibrillator". Pacing Clin Electrophysiol. 27 (7): 971–5. doi:10.1111/j.1540-8159.2004.00567.x. PMID 15271018.
- ↑ 4.0 4.1 Pappone C, Santinelli V, Manguso F, Augello G, Santinelli O, Vicedomini G; et al. (2003). "A randomized study of prophylactic catheter ablation in asymptomatic patients with the Wolff-Parkinson-White syndrome". N Engl J Med. 349 (19): 1803–11. doi:10.1056/NEJMoa035345. PMID 14602878.
- ↑ Haïssaguerre M, Shoda M, Jaïs P, Nogami A, Shah DC, Kautzner J; et al. (2002). "Mapping and ablation of idiopathic ventricular fibrillation". Circulation. 106 (8): 962–7. PMID 12186801.
- ↑ Takemoto M, Yoshimura H, Ohba Y, Matsumoto Y, Yamamoto U, Mohri M; et al. (2005). "Radiofrequency catheter ablation of premature ventricular complexes from right ventricular outflow tract improves left ventricular dilation and clinical status in patients without structural heart disease". J Am Coll Cardiol. 45 (8): 1259–65. doi:10.1016/j.jacc.2004.12.073. PMID 15837259.