Neuroblastoma treatment: Difference between revisions
No edit summary |
|||
Line 1: | Line 1: | ||
{{Neuroblastoma}} | {{Neuroblastoma}} | ||
{{CMG}} | {{CMG}} | ||
==Treatment== | ==Treatment== | ||
=== Current === | === Current === |
Revision as of 17:11, 20 January 2012
Neuroblastoma Microchapters |
Diagnosis |
---|
Treatment |
Case Studies |
Neuroblastoma treatment On the Web |
American Roentgen Ray Society Images of Neuroblastoma treatment |
Risk calculators and risk factors for Neuroblastoma treatment |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]
Treatment
Current
When the lesion is localized, it is generally curable. However, long-term survival for children with advanced disease is poor despite aggressive multimodality therapy.
Recent biologic and genetic characteristics have been identified, which, when added to classic clinical staging, has allowed accurate patient assignment to risk groups so that treatment strategies can be more effectively undertaken. These criteria include the age of the patient, extent of disease spread, microscopic appearance, and several other biological features, most importantly MYCN oncogene amplification, into low, intermediate, and high risk disease. The therapy for these different risk categories is very different. Low risk patients can frequently be observed without any treatment at all, while intermediate risk patients are treated with chemotherapy. High-risk neuroblastoma is treated with intensive chemotherapy, surgery, radiation therapy, bone marrow /Hematopoietic stem cell transplantation and biological-based therapy with Cys-Retinoic acid (Accutane). With current treatments, patients with low and intermediate risk disease have an excellent prognosis with cure rates above 90%. In contrast, therapy for high-risk neuroblastoma results in cures only about 30% of the time.
Clinical trials for new treatments
In May 2008 Molecular Insight Pharmaceuticals announced the opening of a Phase IIa trial of Azedra, the I-131 MIBG molecule radiolabeled using Molecular Insight's proprietary Ultratrace technology, which removes unnecessary nonradioactive molecules, effectively concentrating radiation in the neuroblastoma tumor cells. In November 2006, DRAXIS Health received approval from the U.S. Food and Drug Administration (FDA) to run two clinical trials using radioactive Iobenguane I-131 Injection (I-131 MIBG) to treat high-risk neuroblastoma. These trials are coordinated by a group of 11 children’s hospitals and two universities in the United States known as the New Advances in Neuroblastoma Therapy (NANT) consortium, and are continuations of earlier NANT studies. The trials were expected to start in December 2006 or early 2007. [1]
In February 2007, a study in in Sweden reported that a common painkiller, might inhibit the development of neuroblastoma and help make treatment of the disease more effective. Celecoxib, an analgesic, anti-inflammatory substance that works by inhibiting the effect of the inflammatory enzyme, Cox-2, and thus could affect neuroblastoma tumors, which depend on Cox-2 for their growth and proliferation. Clinical studies are now planned; research to date has been done only in animals and cell cultures.[2]
References
- ↑ "DRAXIS Radiopharmaceutical Unit Approved to Run 2 Clinical Trials to Treat Neuroblastoma", DRAXIS Health Inc. press release, November 22, 2006
- ↑ "Painkiller Helps Against Child Cancer", medicalnewstoday.com, February 8, 2007, accessed March 8, 2007 (source apparently is a press release from the Karolinska Institutet in Sweden)