Atrial fibrillation catheter ablation: Difference between revisions

Jump to navigation Jump to search
No edit summary
No edit summary
Line 2: Line 2:
{{Atrial fibrillation}}
{{Atrial fibrillation}}
{{CMG}}; '''Associate Editor(s)-In-Chief:''' {{CZ}}
{{CMG}}; '''Associate Editor(s)-In-Chief:''' {{CZ}}


==Overview==
==Overview==
In patients with atrial fibrillation where rate control drugs are ineffective and it is not possible to restore sinus rhythm using cardioversion, non-pharmacological alternatives are available. One of the techniques used is called radiofrequency ablation, where the bundle of cells that pace the heart in the atrioventricular node, are destroyed.
In patients with atrial fibrillation where rate control drugs are ineffective and it is not possible to restore sinus rhythm using [[cardioversion]], non-pharmacological alternatives are available. One of the techniques used is called radiofrequency ablation, where the bundle of cells that pace the heart in the atrioventricular node, are destroyed.
==Radiofrequency Ablation==
==Radiofrequency Ablation==
To control rate it is possible to destroy the bundle of cells connecting the upper and lower chambers of the heart - the [[atrioventricular node]] - which regulates heart rate, and to implant a [[artificial pacemaker|pacemaker]] instead. A more complex technique, which avoids the need for a pacemaker, involves ablating groups of cells near the pulmonary veins where atrial fibrillation is thought to originate, or creating more extensive lesions in an attempt to prevent atrial fibrillation from establishing itself.<ref name="pmid16908781"/>
To control rate it is possible to destroy the bundle of cells connecting the upper and lower chambers of the heart - the [[atrioventricular node]] - which regulates heart rate, and to implant a [[artificial pacemaker|pacemaker]] instead. A more complex technique, which avoids the need for a pacemaker, involves ablating groups of cells near the pulmonary veins where atrial fibrillation is thought to originate, or creating more extensive lesions in an attempt to prevent atrial fibrillation from establishing itself.<ref name="pmid16908781"/>

Revision as of 14:33, 7 January 2013

Atrial Fibrillation Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Atrial Fibrillation from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Special Groups

Postoperative AF
Acute Myocardial Infarction
Wolff-Parkinson-White Preexcitation Syndrome
Hypertrophic Cardiomyopathy
Hyperthyroidism
Pulmonary Diseases
Pregnancy
ACS and/or PCI or valve intervention
Heart failure

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

EKG Examples
A-Fib with LBBB

Chest X Ray

Echocardiography

Holter Monitoring and Exercise Stress Testing

Cardiac MRI

Treatment

Rate and Rhythm Control

Cardioversion

Overview
Electrical Cardioversion
Pharmacological Cardioversion

Anticoagulation

Overview
Warfarin
Converting from or to Warfarin
Converting from or to Parenteral Anticoagulants
Dabigatran

Maintenance of Sinus Rhythm

Surgery

Catheter Ablation
AV Nodal Ablation
Surgical Ablation
Cardiac Surgery

Specific Patient Groups

Primary Prevention

Secondary Prevention

Supportive Trial Data

Cost-Effectiveness of Therapy

Case Studies

Case #1

Atrial fibrillation catheter ablation On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Atrial fibrillation catheter ablation

CDC on Atrial fibrillation catheter ablation

Atrial fibrillation catheter ablation in the news

Blogs on Atrial fibrillation catheter ablation

Directions to Hospitals Treating Atrial fibrillation catheter ablation

Risk calculators and risk factors for Atrial fibrillation catheter ablation

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-In-Chief: Cafer Zorkun, M.D., Ph.D. [2]

Overview

In patients with atrial fibrillation where rate control drugs are ineffective and it is not possible to restore sinus rhythm using cardioversion, non-pharmacological alternatives are available. One of the techniques used is called radiofrequency ablation, where the bundle of cells that pace the heart in the atrioventricular node, are destroyed.

Radiofrequency Ablation

To control rate it is possible to destroy the bundle of cells connecting the upper and lower chambers of the heart - the atrioventricular node - which regulates heart rate, and to implant a pacemaker instead. A more complex technique, which avoids the need for a pacemaker, involves ablating groups of cells near the pulmonary veins where atrial fibrillation is thought to originate, or creating more extensive lesions in an attempt to prevent atrial fibrillation from establishing itself.[1]

Ablation is a newer technique and has shown some promise for cases of recurrent AF that are unresponsive to conventional treatments. Radiofrequency ablation (RFA) uses radiofrequency energy to destroy abnormal electrical pathways in heart tissue. The energy emitting probe (electrode) is placed into the heart through a catheter inserted into veins in the groin or neck. Electrodes that can detect electrical activity from inside the heart are also inserted, and the electrophysiologist uses these to "map" an area of the heart in order to locate the abnormal electrical activity before eliminating the responsible tissue.

Most AF ablations consist of isolating the electrical pathways from the pulmonary veins (PV)[2], which are located on the posterior wall of the left atrium. All other veins from the body (including neck and groin) lead to the right atrium, so in order to get to the left atrium the catheters must get across the atrial septum. This is done by piercing a small hole in the septal wall. This is called a transseptal approach. Once in the left atrium, the physician may perform Wide Area Circumferential Ablation (WACA) to electrically isolate the PVs from the left atrium.[3]

Some more recent approaches to ablating AF is to target sites that are particularly disorganized in both atria as well as in the coronary sinus (CS). These sites are termed complex fractionated atrial electrogram (CFAE) sites.[4]. It is believed by some that the CFAE sites are the cause of AF, or a combination of the PVs and CFAE sites are to blame. New techniques include the use of cryoablation (tissue freezing using a coolant which flows through the catheter), microwave ablation, where tissue is ablated by the microwave energy "cooking" the adjacent tissue, and high intensity focused ultrasound (HIFU), which destroys tissue by heating. This is an area of active research, especially with respect to the RF ablation technique and emphasis on isolating the pulmonary veins that enter into the left atrium.

Efficacy and risks of catheter ablation of atrial fibrillation are areas of active debate. A worldwide survey of the outcomes of 8745 ablation procedures[5] demonstrated a 52% success rate (ranging from 14.5% to 76.5% among centers), with an additional 23.9% of patients becoming asymptomatic with addition of an antiarrhythmic medication. In 27.3% of patients, more than one procedure was required to attain these results. There was at least one major complication in 6% of patients. A thorough discussion of results of catheter ablation was published in 2007[6]; it notes that results are widely variable, due in part to differences in technique, follow-up, definitions of success, use of antiarrhythmic therapy, and in experience and technical proficiency.

Related Chapters

Sources

References

  1. 1.0 1.1 Fuster V, Rydén LE, Cannom DS, Crijns HJ, Curtis AB, Ellenbogen KA et al. (2006) ACC/AHA/ESC 2006 Guidelines for the Management of Patients with Atrial Fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Revise the 2001 Guidelines for the Management of Patients With Atrial Fibrillation): developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. Circulation 114 (7):e257-354. DOI:10.1161/CIRCULATIONAHA.106.177292 PMID: 16908781
  2. The Cleveland Clinic
  3. Medscape
  4. Nademanee K, McKenzie J, Kosar E, Schwab M, Sunsaneewitayakul B, Vasavakul T, Khunnawat C, Ngarmukos T. (2004). "A new approach for catheter ablation of atrial fibrillation: mapping of the electrophysiologic substrate". J Am Coll Cardiol. 43 (11): 2044–53. doi:10.1016/j.jacc.2003.12.054. PMID 15172410.
  5. Cappato R, Calkins H, Chen SA, Davies W, Iesaka Y, Kalman J, Kim YH, Klein G, Packer D, Skanes A. (2005). "Worldwide survey on the methods, efficacy, and safety of catheter ablation for human atrial fibrillation". Circulation. 111: 1100–1105. doi:10.1161/01.CIR.0000157153.30978.67. PMID 15723973.
  6. Calkins H, Brugada J, Packer DL, Cappato R, Chen SA, Crijns HJ, Damiano RJ Jr, Davies DW, Haines DE, Haissaguerre M, Iesaka Y, Jackman W, Jais P, Kottkamp H, Kuck KH, Lindsay BD, Marchlinski FE, McCarthy PM, Mont JL, Morady F, Nademanee K, Natale A, Pappone C, Prystowsky E, Raviele A, Ruskin JN, Shemin RJ. (2007). "HRS/EHRA/ECAS expert Consensus Statement on catheter and surgical ablation of atrial fibrillation: recommendations for personnel, policy, procedures and follow-up. A report of the Heart Rhythm Society (HRS) Task Force on catheter and surgical ablation of atrial fibrillation". Heart Rhythm. 4 (6): 816–61. PMID 17556213.
  7. Fuster V, Rydén LE, Cannom DS, Crijns HJ, Curtis AB, Ellenbogen KA et al. (2011) 2011 ACCF/AHA/HRS focused updates incorporated into the ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation 123 (10):e269-367. DOI:10.1161/CIR.0b013e318214876d PMID: 21382897
  8. Estes NA, Halperin JL, Calkins H, Ezekowitz MD, Gitman P, Go AS et al. (2008) ACC/AHA/Physician Consortium 2008 clinical performance measures for adults with nonvalvular atrial fibrillation or atrial flutter: a report of the American College of Cardiology/American Heart Association Task Force on Performance Measures and the Physician Consortium for Performance Improvement (Writing Committee to Develop Clinical Performance Measures for Atrial Fibrillation): developed in collaboration with the Heart Rhythm Society. Circulation 117 (8):1101-20. DOI:10.1161/CIRCULATIONAHA.107.187192 PMID: 18283199


Template:WikiDoc Sources