Aortic coarctation physical examination: Difference between revisions

Jump to navigation Jump to search
Kalsang Dolma (talk | contribs)
Kalsang Dolma (talk | contribs)
Line 60: Line 60:
* Reversed [[differential cyanosis]] (upper body [[cyanosis]] with normal lower-body [[oxygen]]) may occur with associated lesions like [[transposition of the great arteries]], [[patent ductus arteriosus]], and [[pulmonary hypertension]] (right-to-left shunt).
* Reversed [[differential cyanosis]] (upper body [[cyanosis]] with normal lower-body [[oxygen]]) may occur with associated lesions like [[transposition of the great arteries]], [[patent ductus arteriosus]], and [[pulmonary hypertension]] (right-to-left shunt).
* Occasionally adults may have narrow hips and thin legs or have an undeveloped left arm (in those patients in which the coarctation compromises the origin of the [[subclavian artery]]).
* Occasionally adults may have narrow hips and thin legs or have an undeveloped left arm (in those patients in which the coarctation compromises the origin of the [[subclavian artery]]).
===Neurologic===
* [[Intracranial hemorrhage]] ([[subarachnoid hemorrhage]], [[intracerebral hemorrhage]])
* The presentations of these [[intracranial hemorrhage]] may be [[headache]], [[hypertension]], [[seizure]]s, [[meningism]], [[coma|decreased level of consciousness]] or [[coma]], [[intraocular hemorrhage]], [[extrocular muscle palsy]].
** This may be due to the increased association of [[aneurysm|intracranial aneurysm]] dilated collateral arteries in [[spinal cord]].
** The ususal age for presentation is 10-30 years.
** [[Hypertension]] increases the chance for these [[hemorrhages]] but it has also been found associated in patients with [[normal blood pressure]].
** Treatment of choice for most [[aneurysms]] is placement of a clip across the neck of the [[aneurysm]] thus retaining the parent artery yet obliterating blood flow to the [[aneurysm]].


==Presentation based on age==
==Presentation based on age==

Revision as of 16:11, 1 February 2013

Aortic coarctation Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Aortic Coarctation from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Electrocardiogram

Chest X-Ray

CT

MRI

Angiography

Echocardiography

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Aortic coarctation physical examination On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Aortic coarctation physical examination

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Aortic coarctation physical examination

CDC on Aortic coarctation physical examination

Aortic coarctation physical examination in the news

Blogs on Aortic coarctation physical examination

Directions to Hospitals Treating Aortic coarctation

Risk calculators and risk factors for Aortic coarctation physical examination

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-In-Chief: Priyamvada Singh, M.B.B.S.[2], Cafer Zorkun, M.D., Ph.D. [3]; Assistant Editor(s)-In-Chief: Kristin Feeney, B.S.[4]

Overview

In the majority of patients with coarctation, the constriction is located just distal to the subclavian artery. Due to the presence of constriction at isthmus (proximal to the descencing aorta) the pressure of blood proximal to constriction is high whereas the pressure distal to constriction is low. This leads to hypertension in the upper extremities (supplied by subclavian) and hypotension in lower extremities. The difference is usually in systolic blood pressure whereas the diastolic blood pressures are typically similar. Similarly, the pulses in upper extremities are bounding whereas the femoral pulses are often diminished (brachial-femoral delay). There are 3 potential sources of a murmur: multiple arterial collateral (continuous murmur), an associated bicuspid aortic valve (systolic ejection click), and the coarctation itself which can be heard over the left infraclavicular area and under scapula. Murmurs due to associated cardiac abnormalities such as VSD or aortic valve stenosis, may also be detected. Neonates may present with discrepancies in blood pressure and pulses between the limbs, differential cyanosis or reversed differential cyanosis (depending on associated lesions), murmur, congestive heart failure, and shock. Older children and adolescent may be referred due to agitated behavior, headache, vision problem, and hypertension.

Physical Examination

Appearance of the Patient

  • Tachypnea
  • Labored breathing (prominent accessory muscles)

Vital Signs

Pulses and Blood Pressure

  • In human anatomy, the subclavian arteries are two major arteries of the upper thorax. They receive blood from the arch of the aorta. The left subclavian artery supplies blood to the left arm and the right subclavian artery supplies blood to the right arm, with some branches supplying the head and thorax.
  • Abnormalities in blood pressure and pulses are hallmark of diagnosis in coarctation of aorta. The physical finding depends on the severity and location of constriction relative to the the origin of subclavian artery:
    • Tachycardia
    • Left subclavian proximal to coarctation: Hypertension and normal pulses in both arms and hypotension and diminished pulses in lower extremities (differential hypertension). Synchronous radial pulses, but radial-femoral delay will be present under palpation in either arm. This may be appreciated best by simultaneous arm and leg pulse palpation.
    • Left subclavian distal to coarctation: Hypotension and diminished pulses in left arm and lower extremities. Asynchronous radial pulses will be detected in the right and left arms. A brachial-femoral delay between the right arm and the femoral artery may be apparent, while no such delay may be observed with left arm brachial-femoral palpation.
    • Both right and left subclavian artery originate below coarctation: Blood pressure and pulses decreased in all four extremities.
    • In mild cases though the pulses are palpable in all for extremities a brachial-femoral delay can be appreciated.
    • Femoral pulses are often diminished in strength. Exercise exacerbates this gradient.

Neck

There may be webbing of the neck in patients with Turner syndrome, 35% of whom have aortic coarctation.

Heart

Palpation

Auscultation

Heart Sounds
Murmurs

Other Presentations

Central nervous system

Extremities

Neurologic

Presentation based on age

Neonates (Early Presentation)

{{#ev:youtube|obns0jaonpo}}

Children, Adolescents, and Adults (Late Presentation)

2008 ACC/AHA Guidelines for the Management of Adults With Congenital Heart Disease (DO NOT EDIT)[1]

Recommendations for Clinical Evaluation and Follow-Up (DO NOT EDIT)[1]

Class I
"1. Every patient with systemic arterial hypertension should have the brachial and femoral pulses palpated simultaneously to assess timing and amplitude evaluation to search for the brachial-femoral delay of significant aortic coarctation. Supine bilateral arm (brachial artery) blood pressures and prone right or left supine leg (popliteal artery) blood pressures should be measured to search for differential pressure. (Level of Evidence: C)"

References

  1. 1.0 1.1 Warnes CA, Williams RG, Bashore TM, Child JS, Connolly HM, Dearani JA; et al. (2008). "ACC/AHA 2008 guidelines for the management of adults with congenital heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Develop Guidelines on the Management of Adults With Congenital Heart Disease). Developed in Collaboration With the American Society of Echocardiography, Heart Rhythm Society, International Society for Adult Congenital Heart Disease, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons". J Am Coll Cardiol. 52 (23): e1–121. doi:10.1016/j.jacc.2008.10.001. PMID 19038677.

Template:WH

Template:WS