Polio prevention: Difference between revisions
No edit summary |
Sapan Patel (talk | contribs) No edit summary |
||
Line 4: | Line 4: | ||
==Prevention == | ==Prevention == | ||
=== Passive Immunization === | === Passive Immunization === | ||
In 1950, [[William Hammon]] at the University of Pittsburgh purified the [[gamma globulin]] component of the [[blood plasma]] of polio survivors.<ref name=Hammon_1955>{{cite journal |author=Hammon W |title=Passive immunization against poliomyelitis |journal=Monogr Ser World Health Organ |volume=26 |issue= |pages=357–70 |year = 1955 |pmid=14374581}}</ref> Hammon proposed that the gamma globulin, which contained antibodies to poliovirus, could be used to halt poliovirus infection, prevent disease, and reduce the severity of disease in other patients who had contracted polio. The results of a large [[clinical trial]] were promising; the gamma globulin was shown to be about 80% effective in preventing the development of paralytic poliomyelitis.<ref>{{cite journal |author=Hammon W, Coriell L, Ludwig E, ''et al'' |title=Evaluation of Red Cross gamma globulin as a prophylactic agent for poliomyelitis. 5. Reanalysis of results based on laboratory-confirmed cases |journal=J Am Med Assoc |volume=156 |issue=1 |pages=21–7 |year=1954 |pmid=13183798}}</ref> It was also shown to reduce the severity of the disease in patients that developed polio.<ref name=Hammon_1955 /> The gamma globulin approach was later deemed impractical for widespread use, however, due in large part to the limited supply of blood plasma, and the medical community turned its focus to the development of a polio vaccine.<ref name=Rinaldo>{{cite journal |author=Rinaldo C |title=Passive immunization against poliomyelitis: the Hammon gamma globulin field trials, 1951–1953 |journal=[[American Journal of Public Health|Am J Public Health]] |volume=95 |issue=5 |pages=790–9 |year=2005 |pmid=15855454}}</ref> | In 1950, [[William Hammon]] at the University of Pittsburgh purified the [[gamma globulin]] component of the [[blood plasma]] of polio survivors.<ref name=Hammon_1955>{{cite journal |author=Hammon W |title=Passive immunization against poliomyelitis |journal=Monogr Ser World Health Organ |volume=26 |issue= |pages=357–70 |year = 1955 |pmid=14374581}}</ref> Hammon proposed that the gamma globulin, which contained antibodies to poliovirus, could be used to halt poliovirus infection, prevent disease, and reduce the severity of disease in other patients who had contracted polio. The results of a large [[clinical trial]] were promising; the gamma globulin was shown to be about 80% effective in preventing the development of paralytic poliomyelitis.<ref>{{cite journal |author=Hammon W, Coriell L, Ludwig E, ''et al'' |title=Evaluation of Red Cross gamma globulin as a prophylactic agent for poliomyelitis. 5. Reanalysis of results based on laboratory-confirmed cases |journal=J Am Med Assoc |volume=156 |issue=1 |pages=21–7 |year=1954 |pmid=13183798}}</ref> It was also shown to reduce the severity of the disease in patients that developed polio.<ref name=Hammon_1955 /> The gamma globulin approach was later deemed impractical for widespread use, however, due in large part to the limited supply of blood plasma, and the medical community turned its focus to the development of a polio vaccine.<ref name=Rinaldo>{{cite journal |author=Rinaldo C |title=Passive immunization against poliomyelitis: the Hammon gamma globulin field trials, 1951–1953 |journal=[[American Journal of Public Health|Am J Public Health]] |volume=95 |issue=5 |pages=790–9 |year=2005 |pmid=15855454}}</ref> | ||
Line 12: | Line 10: | ||
===Antibody Serum=== | ===Antibody Serum=== | ||
In 1950 William Hammon at the University of Pittsburgh isolated a serum from the blood of polio survivors. Hammon proposed that the serum, which contained antibodies to poliovirus, could be used to halt poliovirus infection, prevent disease, and reduce the severity of disease in other patients who had contracted polio. The results of a large clinical trial were promising; the serum was shown to be about 80% effective in preventing the development of paralytic poliomyelitis. The serum was also shown to reduce the severity of the disease in patients that developed polio. The antibody approach was later deemed impractical for widespread use, however, due in large part to the limited supply of blood plasma, and the medical community turned its focus to the development of a polio vaccine. | In 1950 William Hammon at the University of Pittsburgh isolated a serum from the blood of polio survivors. Hammon proposed that the serum, which contained antibodies to poliovirus, could be used to halt poliovirus infection, prevent disease, and reduce the severity of disease in other patients who had contracted polio. The results of a large clinical trial were promising; the serum was shown to be about 80% effective in preventing the development of paralytic poliomyelitis. The serum was also shown to reduce the severity of the disease in patients that developed polio. The antibody approach was later deemed impractical for widespread use, however, due in large part to the limited supply of blood plasma, and the medical community turned its focus to the development of a polio vaccine. | ||
===Vaccine=== | ===Vaccine=== | ||
[[Polio vaccine]] | [[Polio vaccine]] | ||
Line 26: | Line 22: | ||
==References== | ==References== | ||
{{Reflist|2}} | {{Reflist|2}} | ||
[[Category:Primary care]] | |||
[[Category:Needs overview]] | [[Category:Needs overview]] | ||
[[Category:Disease]] | [[Category:Disease]] | ||
[[Category:Infectious disease]] | [[Category:Infectious disease]] | ||
{{WH}} | |||
{{WS}} |
Revision as of 13:48, 24 April 2013
Polio Microchapters |
Causes |
---|
Diagnosis |
Treatment |
Case Studies |
Polio prevention On the Web |
American Roentgen Ray Society Images of Polio prevention |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]
Prevention
Passive Immunization
In 1950, William Hammon at the University of Pittsburgh purified the gamma globulin component of the blood plasma of polio survivors.[1] Hammon proposed that the gamma globulin, which contained antibodies to poliovirus, could be used to halt poliovirus infection, prevent disease, and reduce the severity of disease in other patients who had contracted polio. The results of a large clinical trial were promising; the gamma globulin was shown to be about 80% effective in preventing the development of paralytic poliomyelitis.[2] It was also shown to reduce the severity of the disease in patients that developed polio.[1] The gamma globulin approach was later deemed impractical for widespread use, however, due in large part to the limited supply of blood plasma, and the medical community turned its focus to the development of a polio vaccine.[3]
Antibody Serum
In 1950 William Hammon at the University of Pittsburgh isolated a serum from the blood of polio survivors. Hammon proposed that the serum, which contained antibodies to poliovirus, could be used to halt poliovirus infection, prevent disease, and reduce the severity of disease in other patients who had contracted polio. The results of a large clinical trial were promising; the serum was shown to be about 80% effective in preventing the development of paralytic poliomyelitis. The serum was also shown to reduce the severity of the disease in patients that developed polio. The antibody approach was later deemed impractical for widespread use, however, due in large part to the limited supply of blood plasma, and the medical community turned its focus to the development of a polio vaccine.
Vaccine
Two polio vaccines are used throughout the world to combat polio. Both vaccines induce immunity to polio, efficiently blocking person-to-person transmission of wild poliovirus, thereby protecting both individual vaccine recipients and the wider community (so-called herd immunity).
The first polio vaccine was developed in 1952 by Jonas Salk at the University of Pittsburgh, and announced to the world on April 12, 1955. The Salk vaccine, or inactivated poliovirus vaccine (IPV), is based on poliovirus grown in a type of monkey kidney tissue culture (Vero cell line), which is chemically-inactivated with formalin. After two doses of IPV, ninety percent or more of individuals develop protective antibody to all three serotypes of poliovirus, and at least 99% are immune to poliovirus following three doses. IPV is currently the vaccine of choice in most countries.
Eight years after Salk's success, Albert Sabin developed an oral polio vaccine (OPV) using live but weakened (attenuated) virus, produced by the repeated passage of the virus through non-human cells at sub-physiological temperatures. Human trials of Sabin's vaccine began in 1957 and it was licensed in 1962. The attenuated poliovirus in the Sabin vaccine replicates very efficiently in the gut, the primary site of wild poliovirus infection and replication, but the vaccine strain is unable to replicate efficiently within nervous system tissue. OPV produces excellent immunity in the intestine, which helps prevent infection with wild virus in areas where the virus is endemic. A single dose of oral polio vaccince produces immunity to all three poliovirus serotypes in approximately 50% of recipients. Three doses of live-attenuated OPV produce protective antibody to all three poliovirus types in more than 95% of recipients.
References
- ↑ 1.0 1.1 Hammon W (1955). "Passive immunization against poliomyelitis". Monogr Ser World Health Organ. 26: 357–70. PMID 14374581.
- ↑ Hammon W, Coriell L, Ludwig E; et al. (1954). "Evaluation of Red Cross gamma globulin as a prophylactic agent for poliomyelitis. 5. Reanalysis of results based on laboratory-confirmed cases". J Am Med Assoc. 156 (1): 21–7. PMID 13183798.
- ↑ Rinaldo C (2005). "Passive immunization against poliomyelitis: the Hammon gamma globulin field trials, 1951–1953". Am J Public Health. 95 (5): 790–9. PMID 15855454.