Anthrax causes: Difference between revisions
Joao Silva (talk | contribs) No edit summary |
Joao Silva (talk | contribs) No edit summary |
||
Line 2: | Line 2: | ||
{{Anthrax}} | {{Anthrax}} | ||
{{CMG}}; {{AE}} {{JS}} | {{CMG}}; {{AE}} {{JS}} | ||
==Overview== | ==Overview== | ||
The causative agent of [[anthrax]] is [[B. anthracis]], a [[motility|nonmotile]], [[Gram-positive]], [[aerobic]] or facultatively [[anaerobic]], [[endospore]]-forming, [[rod]]-shaped [[bacterium]]. The [[spores]] of [[B. anthracis]], which can remain dormant in the environment for decades, are the [[infectious]] form, but vegetative [[B. anthracis]] rarely causes disease.<ref>{{Cite journal | author = [[Sean V. Shadomy]] & [[Theresa L. Smith]] | title = Zoonosis update. Anthrax | journal = [[Journal of the American Veterinary Medical Association]] | volume = 233 | issue = 1 | pages = 63–72 | year = 2008 | month = July | doi = 10.2460/javma.233.1.63 | pmid = 18593313}}</ref> The [[Bacillus]] may enter the body through the [[skin]], [[lungs]], [[gastrointestinal system]] or by injection, after which | The causative agent of [[anthrax]] is [[B. anthracis]], a [[motility|nonmotile]], [[Gram-positive]], [[aerobic]] or facultatively [[anaerobic]], [[endospore]]-forming, [[rod]]-shaped [[bacterium]]. The [[spores]] of [[B. anthracis]], which can remain dormant in the environment for decades, are the [[infectious]] form, but this vegetative [[B. anthracis]] rarely causes disease.<ref>{{Cite journal | author = [[Sean V. Shadomy]] & [[Theresa L. Smith]] | title = Zoonosis update. Anthrax | journal = [[Journal of the American Veterinary Medical Association]] | volume = 233 | issue = 1 | pages = 63–72 | year = 2008 | month = July | doi = 10.2460/javma.233.1.63 | pmid = 18593313}}</ref> The [[Bacillus]] may enter the body through the [[skin]], [[lungs]], [[gastrointestinal system]] or by injection, after which they will travel to the [[lymph nodes]]. The [[virulence factor]]s will facilitate the translocation of the [[toxins]] to the [[cytosol]]. The [[natural reservoir]]s of [[Bacillus anthracis]] include humans, mammals, herbivores, reptiles, and birds. | ||
==Taxonomy== | ==Taxonomy== | ||
Line 14: | Line 15: | ||
| [[File:AnthraxCauses1.jpg|200px|thumb|none| Scanning electron micrograph (SEM) depicted spores from the Sterne strain of Bacillus anthracis bacteria<SMALL>Courtesy: ''[http://phil.cdc.gov/phil/home.asp Public Health Image Library (PHIL), Centers for Disease Control and Prevention (CDC)]''<ref>{{Cite web | title = http://phil.cdc.gov/phil/details.asp | url = http://phil.cdc.gov/phil/details.asp}}</ref></SMALL>]] | | [[File:AnthraxCauses1.jpg|200px|thumb|none| Scanning electron micrograph (SEM) depicted spores from the Sterne strain of Bacillus anthracis bacteria<SMALL>Courtesy: ''[http://phil.cdc.gov/phil/home.asp Public Health Image Library (PHIL), Centers for Disease Control and Prevention (CDC)]''<ref>{{Cite web | title = http://phil.cdc.gov/phil/details.asp | url = http://phil.cdc.gov/phil/details.asp}}</ref></SMALL>]] | ||
|} | |} | ||
[[B. anthracis]], the causative agent of [[anthrax]], is a nonmotile, [[Gram-positive]], [[aerobic]] or facultatively [[anaerobic]], [[endospore]]-forming, [[rod]]-shaped [[bacterium]] approximately 4 μm by 1 μm, although under the microscope it frequently appears in chains of [[cells]]. Like other [[Bacillus]], [[Bacillus anthracis]] is saprophyte, being able to live in vegetation, air, water and soil.<ref name="BhatnagarBatra2001">{{cite journal|last1=Bhatnagar|first1=Rakesh|last2=Batra|first2=Smriti|title=Anthrax Toxin|journal=Critical Reviews in Microbiology|volume=27|issue=3|year=2001|pages=167–200|issn=1040-841X|doi=10.1080/20014091096738}}</ref> | [[B. anthracis]], the causative agent of [[anthrax]], is a [[motility|nonmotile]], [[Gram-positive]], [[aerobic]] or facultatively [[anaerobic]], [[endospore]]-forming, [[rod]]-shaped [[bacterium]] approximately 4 μm by 1 μm, although under the microscope it frequently appears in chains of [[cells]]. Like other [[Bacillus]], [[Bacillus anthracis]] is saprophyte, being able to live in vegetation, air, water and soil.<ref name="BhatnagarBatra2001">{{cite journal|last1=Bhatnagar|first1=Rakesh|last2=Batra|first2=Smriti|title=Anthrax Toxin|journal=Critical Reviews in Microbiology|volume=27|issue=3|year=2001|pages=167–200|issn=1040-841X|doi=10.1080/20014091096738}}</ref> | ||
These [[bacterial]] [[cells]] may occur isolated, form groups of 2 or more [[cells]] in the body, or long chains in cultures.<ref name="BhatnagarBatra2001">{{cite journal|last1=Bhatnagar|first1=Rakesh|last2=Batra|first2=Smriti|title=Anthrax Toxin|journal=Critical Reviews in Microbiology|volume=27|issue=3|year=2001|pages=167–200|issn=1040-841X|doi=10.1080/20014091096738}}</ref> In [[blood smear]]s, smears of [[tissue]]s or lesion fluid from [[diagnostic]] specimens, these chains are two to a few [[cells]] in length. In smears made from [[in vitro]] cultures, they can appear as endless strings of [[cells]] - responsible for the characteristic tackiness of the colonies and for the flocculating nature of broth cultures. [[Cell culture]]s appear with a large, grey and curled structure, resembling a "medusa head".<ref name="BhatnagarBatra2001">{{cite journal|last1=Bhatnagar|first1=Rakesh|last2=Batra|first2=Smriti|title=Anthrax Toxin|journal=Critical Reviews in Microbiology|volume=27|issue=3|year=2001|pages=167–200|issn=1040-841X|doi=10.1080/20014091096738}}</ref> | These [[bacterial]] [[cells]] may occur isolated, form groups of 2 or more [[cells]] in the body, or long chains in [[cell culture|cultures]].<ref name="BhatnagarBatra2001">{{cite journal|last1=Bhatnagar|first1=Rakesh|last2=Batra|first2=Smriti|title=Anthrax Toxin|journal=Critical Reviews in Microbiology|volume=27|issue=3|year=2001|pages=167–200|issn=1040-841X|doi=10.1080/20014091096738}}</ref> In [[blood smear]]s, smears of [[tissue]]s or lesion fluid from [[diagnostic]] specimens, these chains are two to a few [[cells]] in length. In smears made from [[in vitro]] cultures, they can appear as endless strings of [[cells]] - responsible for the characteristic tackiness of the colonies and for the flocculating nature of broth cultures. [[Cell culture]]s appear with a large, grey and curled structure, resembling a "medusa head".<ref name="BhatnagarBatra2001">{{cite journal|last1=Bhatnagar|first1=Rakesh|last2=Batra|first2=Smriti|title=Anthrax Toxin|journal=Critical Reviews in Microbiology|volume=27|issue=3|year=2001|pages=167–200|issn=1040-841X|doi=10.1080/20014091096738}}</ref> | ||
[[B. anthracis]] have a characteristic square-ended appearance, traditionally associated with its vegetative state, although this may not always be very clear. In the presence of [[oxygen]], ideally at 32 - 35 ºC, and towards the end of the exponential phase of growth, one ellipsoidal [[spore]] (approximately 2 μm by 1 μm in size) is formed | [[B. anthracis]] have a characteristic square-ended appearance, traditionally associated with its vegetative state, although this may not always be very clear. In the presence of [[oxygen]], ideally at 32 - 35 ºC, and towards the end of the exponential phase of growth, one ellipsoidal [[spore]] (approximately 2 μm by 1 μm in size) is formed within each [[cell]].<ref name=WHO>{{cite web | title = Anthrax in Humans and Animals | url = http://www.who.int/csr/resources/publications/anthrax_web.pdf }}</ref><ref name="BhatnagarBatra2001">{{cite journal|last1=Bhatnagar|first1=Rakesh|last2=Batra|first2=Smriti|title=Anthrax Toxin|journal=Critical Reviews in Microbiology|volume=27|issue=3|year=2001|pages=167–200|issn=1040-841X|doi=10.1080/20014091096738}}</ref> Commonly the [[spores]] will be produced once the [[cell]] senses scarcity of [[nutrients]].<ref name="pmid12610093">{{cite journal| author=Spencer RC| title=Bacillus anthracis. | journal=J Clin Pathol | year= 2003 | volume= 56 | issue= 3 | pages= 182-7 | pmid=12610093 | doi= | pmc=PMC1769905 | url=http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&tool=sumsearch.org/cite&retmode=ref&cmd=prlinks&id=12610093 }} </ref> | ||
The [[spores]] of [[B. anthracis]], which can remain dormant in the environment for decades, being resistant to heat and disinfectants, are the [[infectious]] form, but vegetative [[B. anthracis]] rarely causes disease.<ref>{{Cite journal | author = [[Sean V. Shadomy]] & [[Theresa L. Smith]] | title = Zoonosis update. Anthrax | journal = [[Journal of the American Veterinary Medical Association]] | volume = 233 | issue = 1 | pages = 63–72 | year = 2008 | month = July | doi = 10.2460/javma.233.1.63 | pmid = 18593313}}</ref><ref name="BhatnagarBatra2001">{{cite journal|last1=Bhatnagar|first1=Rakesh|last2=Batra|first2=Smriti|title=Anthrax Toxin|journal=Critical Reviews in Microbiology|volume=27|issue=3|year=2001|pages=167–200|issn=1040-841X|doi=10.1080/20014091096738}}</ref> | The [[spores]] of [[B. anthracis]], which can remain dormant in the environment for decades, being resistant to heat and disinfectants, are the [[infectious]] form, but vegetative [[B. anthracis]] rarely causes disease.<ref>{{Cite journal | author = [[Sean V. Shadomy]] & [[Theresa L. Smith]] | title = Zoonosis update. Anthrax | journal = [[Journal of the American Veterinary Medical Association]] | volume = 233 | issue = 1 | pages = 63–72 | year = 2008 | month = July | doi = 10.2460/javma.233.1.63 | pmid = 18593313}}</ref><ref name="BhatnagarBatra2001">{{cite journal|last1=Bhatnagar|first1=Rakesh|last2=Batra|first2=Smriti|title=Anthrax Toxin|journal=Critical Reviews in Microbiology|volume=27|issue=3|year=2001|pages=167–200|issn=1040-841X|doi=10.1080/20014091096738}}</ref> | ||
In the absence of [[oxygen]] and under a high partial pressure of Co2, in the presence of [[bicarbonate]], the vegetative [[cell]] secretes its [[polypeptide]] [[capsule]] | In the absence of [[oxygen]] and under a high partial pressure of Co2, in the presence of [[bicarbonate]], the vegetative [[cell]] secretes its [[polypeptide]] [[capsule]]. This is one of the two established [[in vivo]] [[virulence factor]]s of [[B. anthracis]]. The [[capsule]] is also a primary [[diagnostic]] aid.<ref name=WHO>{{cite web | title = Anthrax in Humans and Animals | url = http://www.who.int/csr/resources/publications/anthrax_web.pdf }}</ref> Protective [[antigen]] (PA) and [[edema]] factor (EF) combine to form [[edema]] toxin (ET) and PA and lethal factor (LF) combine to form lethal toxin (LT), the active [[toxins]].<ref>{{Cite journal | author = [[Mahtab Moayeri]] & [[Stephen H. Leppla]] | title = The roles of anthrax toxin in pathogenesis | journal = [[Current opinion in microbiology]] | volume = 7 | issue = 1 | pages = 19–24 | year = 2004 | month = February | doi = 10.1016/j.mib.2003.12.001 | pmid = 15036135}}</ref><ref name=CDC>{{cite web | title = Centers for Disease Control and Prevention Expert Panel Meetings on Prevention and Treatment of Anthrax in Adults | url = http://wwwnc.cdc.gov/eid/article/20/2/13-0687_article }}</ref> | ||
==Origin== | ==Origin== | ||
[[ | [[Bacillus anthracis]] is thought to have originated in Egypt and Mesopotamia. Many scholars think that in Moses’ time, during the 10 plagues of Egypt, [[anthrax]] may have caused what was known as the fifth [[plague]], described as a sickness affecting horses, cattle, sheep, camels and oxen. | ||
==Tropism== | ==Tropism== | ||
After entering the body (through the [[skin]], [[lungs]], [[gastrointestinal tract]] or by [[injection]]), [[B. anthracis]] [[spores]] are believed to germinate locally or be transported by [[phagocytic cells]] to the [[lymphatics]] and regional [[lymph nodes]], where they germinate.<ref name=CDC>{{cite web | title = Centers for Disease Control and Prevention Expert Panel Meetings on Prevention and Treatment of Anthrax in Adults | url = http://wwwnc.cdc.gov/eid/article/20/2/13-0687_article }}</ref><ref name="Ross1957">{{cite journal|last1=Ross|first1=Joan M.|title=The pathogenesis of anthrax following the administration of spores by the respiratory route|journal=The Journal of Pathology and Bacteriology|volume=73|issue=2|year=1957|pages=485–494|issn=0368-3494|doi=10.1002/path.1700730219}}</ref> After binding to cell surface receptors, the PA portion of the complexes facilitates translocation of the [[toxins]] to the [[cytosol]].<ref name="Moayeri2004">{{cite journal|last1=Moayeri|first1=M|title=The roles of anthrax toxin in pathogenesis|journal=Current Opinion in Microbiology|volume=7|issue=1|year=2004|pages=19–24|issn=13695274|doi=10.1016/j.mib.2003.12.001}}</ref><ref name=CDC>{{cite web | title = Centers for Disease Control and Prevention Expert Panel Meetings on Prevention and Treatment of Anthrax in Adults | url = http://wwwnc.cdc.gov/eid/article/20/2/13-0687_article }}</ref> | After entering the body (through the [[skin]], [[lungs]], [[gastrointestinal tract]] or by [[injection]]), [[B. anthracis]] [[spores]] are believed to germinate locally or be transported by [[phagocytic cells]] to the [[lymphatics]] and regional [[lymph nodes]], where they germinate.<ref name=CDC>{{cite web | title = Centers for Disease Control and Prevention Expert Panel Meetings on Prevention and Treatment of Anthrax in Adults | url = http://wwwnc.cdc.gov/eid/article/20/2/13-0687_article }}</ref><ref name="Ross1957">{{cite journal|last1=Ross|first1=Joan M.|title=The pathogenesis of anthrax following the administration of spores by the respiratory route|journal=The Journal of Pathology and Bacteriology|volume=73|issue=2|year=1957|pages=485–494|issn=0368-3494|doi=10.1002/path.1700730219}}</ref> After binding to [[cell]] surface receptors, the PA portion of the complexes facilitates translocation of the [[toxins]] to the [[cytosol]].<ref name="Moayeri2004">{{cite journal|last1=Moayeri|first1=M|title=The roles of anthrax toxin in pathogenesis|journal=Current Opinion in Microbiology|volume=7|issue=1|year=2004|pages=19–24|issn=13695274|doi=10.1016/j.mib.2003.12.001}}</ref><ref name=CDC>{{cite web | title = Centers for Disease Control and Prevention Expert Panel Meetings on Prevention and Treatment of Anthrax in Adults | url = http://wwwnc.cdc.gov/eid/article/20/2/13-0687_article }}</ref> | ||
==Natural Reservoir== | ==Natural Reservoir== |
Revision as of 18:45, 20 July 2014
Anthrax Microchapters |
Diagnosis |
---|
Treatment |
Case Studies |
Anthrax causes On the Web |
American Roentgen Ray Society Images of Anthrax causes |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: João André Alves Silva, M.D. [2]
Overview
The causative agent of anthrax is B. anthracis, a nonmotile, Gram-positive, aerobic or facultatively anaerobic, endospore-forming, rod-shaped bacterium. The spores of B. anthracis, which can remain dormant in the environment for decades, are the infectious form, but this vegetative B. anthracis rarely causes disease.[1] The Bacillus may enter the body through the skin, lungs, gastrointestinal system or by injection, after which they will travel to the lymph nodes. The virulence factors will facilitate the translocation of the toxins to the cytosol. The natural reservoirs of Bacillus anthracis include humans, mammals, herbivores, reptiles, and birds.
Taxonomy
Bacteria; Archaebacteria; Firmicutes; Bacilli; Bacillales; Bacillaceae; Bacillus; anthracis; Bacillus anthracis
Biology
B. anthracis, the causative agent of anthrax, is a nonmotile, Gram-positive, aerobic or facultatively anaerobic, endospore-forming, rod-shaped bacterium approximately 4 μm by 1 μm, although under the microscope it frequently appears in chains of cells. Like other Bacillus, Bacillus anthracis is saprophyte, being able to live in vegetation, air, water and soil.[4]
These bacterial cells may occur isolated, form groups of 2 or more cells in the body, or long chains in cultures.[4] In blood smears, smears of tissues or lesion fluid from diagnostic specimens, these chains are two to a few cells in length. In smears made from in vitro cultures, they can appear as endless strings of cells - responsible for the characteristic tackiness of the colonies and for the flocculating nature of broth cultures. Cell cultures appear with a large, grey and curled structure, resembling a "medusa head".[4]
B. anthracis have a characteristic square-ended appearance, traditionally associated with its vegetative state, although this may not always be very clear. In the presence of oxygen, ideally at 32 - 35 ºC, and towards the end of the exponential phase of growth, one ellipsoidal spore (approximately 2 μm by 1 μm in size) is formed within each cell.[5][4] Commonly the spores will be produced once the cell senses scarcity of nutrients.[6]
The spores of B. anthracis, which can remain dormant in the environment for decades, being resistant to heat and disinfectants, are the infectious form, but vegetative B. anthracis rarely causes disease.[7][4]
In the absence of oxygen and under a high partial pressure of Co2, in the presence of bicarbonate, the vegetative cell secretes its polypeptide capsule. This is one of the two established in vivo virulence factors of B. anthracis. The capsule is also a primary diagnostic aid.[5] Protective antigen (PA) and edema factor (EF) combine to form edema toxin (ET) and PA and lethal factor (LF) combine to form lethal toxin (LT), the active toxins.[8][9]
Origin
Bacillus anthracis is thought to have originated in Egypt and Mesopotamia. Many scholars think that in Moses’ time, during the 10 plagues of Egypt, anthrax may have caused what was known as the fifth plague, described as a sickness affecting horses, cattle, sheep, camels and oxen.
Tropism
After entering the body (through the skin, lungs, gastrointestinal tract or by injection), B. anthracis spores are believed to germinate locally or be transported by phagocytic cells to the lymphatics and regional lymph nodes, where they germinate.[9][10] After binding to cell surface receptors, the PA portion of the complexes facilitates translocation of the toxins to the cytosol.[11][9]
Natural Reservoir
Natural reservoirs of Bacillus anthracis include:[5][4][9]
- Humans
- Mammals
- Herbivores
- Reptiles
- Birds
References
- ↑ Sean V. Shadomy & Theresa L. Smith (2008). "Zoonosis update. Anthrax". Journal of the American Veterinary Medical Association. 233 (1): 63–72. doi:10.2460/javma.233.1.63. PMID 18593313. Unknown parameter
|month=
ignored (help) - ↑ "http://phil.cdc.gov/phil/details.asp". External link in
|title=
(help) - ↑ "http://phil.cdc.gov/phil/details.asp". External link in
|title=
(help) - ↑ 4.0 4.1 4.2 4.3 4.4 4.5 Bhatnagar, Rakesh; Batra, Smriti (2001). "Anthrax Toxin". Critical Reviews in Microbiology. 27 (3): 167–200. doi:10.1080/20014091096738. ISSN 1040-841X.
- ↑ 5.0 5.1 5.2 "Anthrax in Humans and Animals" (PDF).
- ↑ Spencer RC (2003). "Bacillus anthracis". J Clin Pathol. 56 (3): 182–7. PMC 1769905. PMID 12610093.
- ↑ Sean V. Shadomy & Theresa L. Smith (2008). "Zoonosis update. Anthrax". Journal of the American Veterinary Medical Association. 233 (1): 63–72. doi:10.2460/javma.233.1.63. PMID 18593313. Unknown parameter
|month=
ignored (help) - ↑ Mahtab Moayeri & Stephen H. Leppla (2004). "The roles of anthrax toxin in pathogenesis". Current opinion in microbiology. 7 (1): 19–24. doi:10.1016/j.mib.2003.12.001. PMID 15036135. Unknown parameter
|month=
ignored (help) - ↑ 9.0 9.1 9.2 9.3 "Centers for Disease Control and Prevention Expert Panel Meetings on Prevention and Treatment of Anthrax in Adults".
- ↑ Ross, Joan M. (1957). "The pathogenesis of anthrax following the administration of spores by the respiratory route". The Journal of Pathology and Bacteriology. 73 (2): 485–494. doi:10.1002/path.1700730219. ISSN 0368-3494.
- ↑ Moayeri, M (2004). "The roles of anthrax toxin in pathogenesis". Current Opinion in Microbiology. 7 (1): 19–24. doi:10.1016/j.mib.2003.12.001. ISSN 1369-5274.