Hemothorax overview

Revision as of 19:03, 16 March 2018 by SimaNoor (talk | contribs)
Jump to navigation Jump to search

Hemothorax Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Hemothorax from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Chest X Ray

Echocardiography or Ultrasound

CT

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Hemothorax overview On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Hemothorax overview

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Hemothorax overview

CDC on Hemothorax overview

Hemothorax overview in the news

Blogs on Hemothorax overview

Directions to Hospitals Treating Hemothorax

Risk calculators and risk factors for Hemothorax overview

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Overview

Hemothorax as a clinico-pathological entity can be defined in two ways. Morphologically, it is a pathologic collection of blood within the pleural cavity, between the lung surface and inner chest wall. Clinically , hemothorax is defined as a pleural fluid with a hematocrit ranging from at least 25–50% of peripheral blood. In cases of long standing haemothorax due to haemodilution, hemothorax can appear with lower levels of hematocrit. massive hemothorax is defined as the drainage of more than 1500 cc of blood upon chest tube insertion.

Historical Perspective

Haemothorax has been detailed in numerous medical writings dating back to ancient times. In 1794, the first intercostal incision was developed by John Hunter to treat and drainage of the hemothorax. Although Hunter's method was effective in evacuating the hemothorax, an iatrogenic pneumothorax as a result of the procedure was significant. Some recommended closure of chest wounds without drainage. Observing the advantages and dangers of both forms of therapy, Guthrie, in the early 1800s, proposed early evacuation of blood through an existing chest wound. Finally, by the 1870s, early hemothorax evacuation by intercostal incision was considered standard practice.

Classification

Spontaneous haemothorax (SH) is a subcategory of haemothorax.

Pathophysiology

Haemothorax is a pathologic collection of blood within the pleural cavity, between the lung surface and inner chest wall. Three mechanisms of bleeding in haemothorax include torn adhesion between the parietal and visceral pleurae, rupture of neovascularized bullae as a complication of subpleural emphysematous blebs, and torn congenital aberrant vessels branching from the cupola and distributed in and around the bulla in the apex of the lung. There are some genetic disorder that are predisposed to haemothorax.

Causes

Haemothorax may be caused by trauma or can be spontaneous and iatrogenous. Causes of traumatic haemothorax include blunt force injuries ,penetrating thoracic injuries, and thoracoabdominal injuries. Causes of spontaneous haemothorax include vascular disorders, malignancies, connective tissue disorders, gynecological disorders, hematological disorders, and miscellaneous pathological entities. Haemothorax can also be a complication of various iatrogenically-related procedures.

Differentiating [disease name] from other Diseases

Haemothorax must be differentiated from other diseases that cause dyspnea such as pleural effusion, chylothorax, pneumothorax.

Epidemiology and Demographics

The exact incidence of haemothorax is not clear. Chest injuries occur in approximately 60% of all polytrauma cases and haemothorax is most frequently caused by chest trauma. The occurrence of haemothorax related to trauma in the United States is estimated to be 300,000 cases annually.

Age

  • Patients of all age groups may develop haemothorax.

Gender

  • haemothorax affects men and women equally.

Race

  • There is no racial predilection for haemothorax.

Risk Factors

Common risk factor in the development of hemothorax is trauma. Non-traumatic hemothorax is a relatively uncommon entity. Procedure can be another risk for hemothorax.

Natural History, Complications and Prognosis

Bleeding into the pleural space is exposed to the motion of the diaphragm, lungs, and other intrathoracic structures. The agitation of cardiac and respiratory movement defibrinates the blood, and a fibrin clot thus formed is deposited on the layers of pleura. After several hours, clot formation is inevitable and it should be evacuated. if left untreated, it may progress to develop some complications.

Diagnosis

Symptoms

  • Symptoms of hemothorax may include the following:
    • severe chest pain

Physical Examination

  • Physical examination may be remarkable for:
    • dullness to percussion
    • decreased breath sounds
    • dyspnea
    • hypovolemic shock
    • trachea deviation

Laboratory Findings

Laboratory findings consistent with the diagnosis of hemothorax include reduced concentrations of hemoglobin in complete blood count(CBC) and pleural fluid with a hematocrit ranging from at least 25–50% of peripheral blood.

Imaging Findings

  • There are no [imaging study] findings associated with [disease name].
  • [Imaging study 1] is the imaging modality of choice for [disease name].
  • On [imaging study 1], [disease name] is characterized by [finding 1], [finding 2], and [finding 3].
  • [Imaging study 2] may demonstrate [finding 1], [finding 2], and [finding 3].

Treatment

Medical Therapy

The mainstay of medical therapy for hemothorax is, fluid resuscitation and blood transfusion. All patients, regardless of causes, require attention for fluid resuscitation and blood transfusion. Prophylactic use of antibiotics following haemothorax reduces the rate of infectious complications such as pneumonia and empyema during at least 24 hour after the start of chest tube drainage. Antibiotic treatment should be directed to Staphylococcus aureus and Streptococcus species and the use of first generation cephalosporins during the first 24 hour in patients treated with chest tube drainage is recommended. Intrapleural fibrinolytic therapy (IPFT) has been advocated as an alternative to evacuate residual blood clots and breakdown adhesions in low-resource settings where the relatively costly and sophisticated technique of VATS may not be available, feasible or applicable. Several studies report on IPFT with streptokinase, urokinase or tissue plasminogen activator (TPA). Duration of treatment with IPFT can vary between 2 and 9 days for streptokinase and 2–15 days for urokinase.

Surgery

Primary Prevention

Use safety measures (such as seat belts) to avoid injury. Depending on the cause, a hemothorax may not be preventable.

Secondary Prevention

References

Template:WH Template:WS