Myasthenia gravis pathophysiology

Revision as of 15:09, 28 November 2018 by Fahimeh Shojaei (talk | contribs)
Jump to navigation Jump to search

Myasthenia gravis Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Myasthenia Gravis from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Chest X Ray

CT

MRI

Echocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Myasthenia gravis pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Myasthenia gravis pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Myasthenia gravis pathophysiology

CDC on Myasthenia gravis pathophysiology

Myasthenia gravis pathophysiology in the news

Blogs on Myasthenia gravis pathophysiology

Directions to Hospitals Treating Type page name here

Risk calculators and risk factors for Myasthenia gravis pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Overview

Pathophysiology

Physiology

pathogenesis

The role of T cells:

There are two kinds of CD4+ T cells, Th1 and Th2. Th1 cells produce IL-2, IFN-γ and TNF- α which are proinflammatory cytokines and stimulate cell-mediated immune responses. Th2 cells produce IL-4, IL-6 and IL-10 which are anti-inflammatory cytokines and stimulate humoral immune response. In the blood of MG patients we have anti-AChR Th1 cells against which can induce B cells to produce high-affinity anti-AChR antibodies. Based on this fact treatment against Th1 cells can improve MG symptoms.[21][22][23]

Genetics

[Disease name] is transmitted in [mode of genetic transmission] pattern.

OR

Genes involved in the pathogenesis of [disease name] include:

  • [Gene1]
  • [Gene2]
  • [Gene3]

OR

The development of [disease name] is the result of multiple genetic mutations such as:

  • [Mutation 1]
  • [Mutation 2]
  • [Mutation 3]

Associated Conditions

Conditions associated with [disease name] include:

  • [Condition 1]
  • [Condition 2]
  • [Condition 3]

Microscopic Pathology

On microscopic histopathological analysis, [feature1], [feature2], and [feature3] are characteristic findings of [disease name].


References

  1. 1.0 1.1 Horton RM, Manfredi AA, Conti-Tronconi BM (May 1993). "The 'embryonic' gamma subunit of the nicotinic acetylcholine receptor is expressed in adult extraocular muscle". Neurology. 43 (5): 983–6. PMID 7684117.
  2. 2.0 2.1 2.2 2.3 Hoch W, McConville J, Helms S, Newsom-Davis J, Melms A, Vincent A (March 2001). "Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies". Nat. Med. 7 (3): 365–8. doi:10.1038/85520. PMID 11231638.
  3. 3.0 3.1 Ruegg MA, Bixby JL (January 1998). "Agrin orchestrates synaptic differentiation at the vertebrate neuromuscular junction". Trends Neurosci. 21 (1): 22–7. PMID 9464682.
  4. Sahashi K, Engel AG, Lambert EH, Howard FM (March 1980). "Ultrastructural localization of the terminal and lytic ninth complement component (C9) at the motor end-plate in myasthenia gravis". J. Neuropathol. Exp. Neurol. 39 (2): 160–72. PMID 7373347.
  5. Vincent A, McConville J, Farrugia ME, Bowen J, Plested P, Tang T, Evoli A, Matthews I, Sims G, Dalton P, Jacobson L, Polizzi A, Blaes F, Lang B, Beeson D, Willcox N, Newsom-Davis J, Hoch W (September 2003). "Antibodies in myasthenia gravis and related disorders". Ann. N. Y. Acad. Sci. 998: 324–35. PMID 14592891.
  6. McConville J, Farrugia ME, Beeson D, Kishore U, Metcalfe R, Newsom-Davis J, Vincent A (April 2004). "Detection and characterization of MuSK antibodies in seronegative myasthenia gravis". Ann. Neurol. 55 (4): 580–4. doi:10.1002/ana.20061. PMID 15048899.
  7. Rødgaard A, Nielsen FC, Djurup R, Somnier F, Gammeltoft S (January 1987). "Acetylcholine receptor antibody in myasthenia gravis: predominance of IgG subclasses 1 and 3". Clin. Exp. Immunol. 67 (1): 82–8. PMC 1542559. PMID 3621677.
  8. 8.0 8.1 Leite MI, Jacob S, Viegas S, Cossins J, Clover L, Morgan BP, Beeson D, Willcox N, Vincent A (July 2008). "IgG1 antibodies to acetylcholine receptors in 'seronegative' myasthenia gravis". Brain. 131 (Pt 7): 1940–52. doi:10.1093/brain/awn092. PMC 2442426. PMID 18515870.
  9. Ghazanfari N, Fernandez KJ, Murata Y, Morsch M, Ngo ST, Reddel SW, Noakes PG, Phillips WD (March 2011). "Muscle specific kinase: organiser of synaptic membrane domains". Int. J. Biochem. Cell Biol. 43 (3): 295–8. doi:10.1016/j.biocel.2010.10.008. PMID 20974278.
  10. Bergamin E, Hallock PT, Burden SJ, Hubbard SR (July 2010). "The cytoplasmic adaptor protein Dok7 activates the receptor tyrosine kinase MuSK via dimerization". Mol. Cell. 39 (1): 100–9. doi:10.1016/j.molcel.2010.06.007. PMC 2917201. PMID 20603078.
  11. Okada K, Inoue A, Okada M, Murata Y, Kakuta S, Jigami T, Kubo S, Shiraishi H, Eguchi K, Motomura M, Akiyama T, Iwakura Y, Higuchi O, Yamanashi Y (June 2006). "The muscle protein Dok-7 is essential for neuromuscular synaptogenesis". Science. 312 (5781): 1802–5. doi:10.1126/science.1127142. PMID 16794080.
  12. Deymeer F, Gungor-Tuncer O, Yilmaz V, Parman Y, Serdaroglu P, Ozdemir C, Vincent A, Saruhan-Direskeneli G (February 2007). "Clinical comparison of anti-MuSK- vs anti-AChR-positive and seronegative myasthenia gravis". Neurology. 68 (8): 609–11. doi:10.1212/01.wnl.0000254620.45529.97. PMID 17310034.
  13. Jacob S, Viegas S, Leite MI, Webster R, Cossins J, Kennett R, Hilton-Jones D, Morgan BP, Vincent A (August 2012). "Presence and pathogenic relevance of antibodies to clustered acetylcholine receptor in ocular and generalized myasthenia gravis". Arch. Neurol. 69 (8): 994–1001. doi:10.1001/archneurol.2012.437. PMID 22689047.
  14. Rodríguez Cruz PM, Al-Hajjar M, Huda S, Jacobson L, Woodhall M, Jayawant S, Buckley C, Hilton-Jones D, Beeson D, Vincent A, Leite MI, Palace J (June 2015). "Clinical Features and Diagnostic Usefulness of Antibodies to Clustered Acetylcholine Receptors in the Diagnosis of Seronegative Myasthenia Gravis". JAMA Neurol. 72 (6): 642–9. doi:10.1001/jamaneurol.2015.0203. PMID 25894002.
  15. Higuchi O, Hamuro J, Motomura M, Yamanashi Y (February 2011). "Autoantibodies to low-density lipoprotein receptor-related protein 4 in myasthenia gravis". Ann. Neurol. 69 (2): 418–22. doi:10.1002/ana.22312. PMID 21387385.
  16. Madhavan R, Gong ZL, Ma JJ, Chan AW, Peng HB (December 2009). "The function of cortactin in the clustering of acetylcholine receptors at the vertebrate neuromuscular junction". PLoS ONE. 4 (12): e8478. doi:10.1371/journal.pone.0008478. PMC 2793544. PMID 20041195.
  17. Ohta M, Ohta K, Itoh N, Kurobe M, Hayashi K, Nishitani H (March 1990). "Anti-skeletal muscle antibodies in the sera from myasthenic patients with thymoma: identification of anti-myosin, actomyosin, actin, and alpha-actinin antibodies by a solid-phase radioimmunoassay and a western blotting analysis". Clin. Chim. Acta. 187 (3): 255–64. PMID 2323065.
  18. Nauert JB, Klauck TM, Langeberg LK, Scott JD (January 1997). "Gravin, an autoantigen recognized by serum from myasthenia gravis patients, is a kinase scaffold protein". Curr. Biol. 7 (1): 52–62. PMID 9000000.
  19. Agius MA, Zhu S, Kirvan CA, Schafer AL, Lin MY, Fairclough RH, Oger JJ, Aziz T, Aarli JA (May 1998). "Rapsyn antibodies in myasthenia gravis". Ann. N. Y. Acad. Sci. 841: 516–21. PMID 9668284.
  20. Yi Q, Pirskanen R, Lefvert AK (February 1993). "Human muscle acetylcholine receptor reactive T and B lymphocytes in the peripheral blood of patients with myasthenia gravis". J. Neuroimmunol. 42 (2): 215–22. PMID 8429105.
  21. Christadoss P, Goluszko E (January 2002). "Treatment of experimental autoimmune myasthenia gravis with recombinant human tumor necrosis factor receptor Fc protein". J. Neuroimmunol. 122 (1–2): 186–90. PMID 11777558.
  22. Feferman T, Maiti PK, Berrih-Aknin S, Bismuth J, Bidault J, Fuchs S, Souroujon MC (May 2005). "Overexpression of IFN-induced protein 10 and its receptor CXCR3 in myasthenia gravis". J. Immunol. 174 (9): 5324–31. PMID 15843529.
  23. Shi FD, Wang HB, Li H, Hong S, Taniguchi M, Link H, Van Kaer L, Ljunggren HG (September 2000). "Natural killer cells determine the outcome of B cell-mediated autoimmunity". Nat. Immunol. 1 (3): 245–51. doi:10.1038/79792. PMID 10973283.

Template:WH Template:WS