F-box/WD repeat-containing protein 1A (FBXW1A) also known as βTrCP1 or Fbxw1 or hsSlimb or pIkappaBalpha-E3 receptor subunit is a protein that in humans is encoded by the BTRC (beta-transducin repeat containing) gene.[1][2]
This gene encodes a member of the F-box protein family which is characterized by an approximately 40 residue structural motif, the F-box. The F-box proteins constitute one of the four subunits of ubiquitin protein ligase complex called SCFs (Skp1-Cul1-F-box protein), which often, but not always, recognize substrates in a phosphorylation-dependent manner. F-box proteins are divided into 3 classes:
and Fbxos containing either "other" protein–protein interaction modules or no recognizable motifs.
The protein encoded by this gene belongs to the Fbxw class as, in addition to an F-box, this protein contains multiple WD40 repeats. This protein is homologous to Xenopus βTrCP, yeastMet30, NeurosporaScon2 and DrosophilaSlimb. In mammals, in addition to βTrCP1, a paralog protein (called βTrCP2 or FBXW11) also exists, but, so far, their functions appear redundant and indistinguishable.
Human βTrCP (referred to both βTrCP1 and βTrCP2) was originally identified as a cellular ubiquitin ligase that is bound by the HIV-1Vpu viral protein to eliminate cellular CD4 by connecting it to the proteolytic machinery.[3] Subsequently, βTrCP was shown to regulate multiple cellular processes by mediating the degradation of various targets.[4] Cell cycle regulators constitute a major group of βTrCP substrates. During S phase, βTrCP keeps CDK1 in check by promoting the degradation of the phosphatase CDC25A,[5] whereas in G2, βTrCP contributes to CDK1 activation by targeting the kinase WEE1 for degradation.[6] In early mitosis, βTrCP mediates the degradation of EMI1,[7][8] an inhibitor of the APC/C ubiquitin ligase complex, which is responsible for the anaphase-metaphase transition (by inducing the proteolysis of Securin) and mitotic exit (by driving the degradation of mitotic CDK1 activating cyclin subunits). Furthermore, βTrCP controls APC/C by targeting REST, thereby removing its transcriptional repression on MAD2, an essential component of the spindle assembly checkpoint that keeps APC/C inactive until all chromatids are attached to the spindle microtubles.[9]
Function
βTrCP plays important roles in regulating cell cycle checkpoints. In response to genotoxic stress, it contributes to turn off CDK1 activity by mediating the degradation of CDC25A in collaboration with Chk1,[5][10] thereby preventing cell cycle progression before the completion of DNA repair. During recovery from DNA replication and DNA damage, βTrCP instead targets Claspin in a Plk1-dependent manner.[11][12][13]
βTrCP has also emerged as an important player in protein translation, cell grow and survival. In response to mitogens, PDCD4, an inhibitor of the translation initiation factor eIF4A, is rapidly degraded in a βTrCP- and S6K1-dependent manner, allowing efficient protein translation and cell growth.[14] βTrCP also cooperates with mTOR and CK1α to induce the degradation of DEPTOR (an mTOR inhibitor), thereby generating an auto-amplification loop to promote the full activation of mTOR.[15][16][17] At the same time, βTrCP mediates the degradation of the pro-apoptotic protein BimEL to promote cell survival.[18]
βTrCP behaves as an oncoprotein in some tissues. Elevated levels of βTrCP expression have been found in colorectal,[33] pancreatic,[34] hapatoblastoma,[35] and breast cancers.[36]
References
↑Fujiwara T, Suzuki M, Tanigami A, Ikenoue T, Omata M, Chiba T, Tanaka K (Jul 1999). "The BTRC gene, encoding a human F-box/WD40-repeat protein, maps to chromosome 10q24-q25". Genomics. 58 (1): 104–105. doi:10.1006/geno.1999.5792. PMID10331953.
↑ 3.03.1Margottin F, Bour SP, Durand H, Selig L, Benichou S, Richard V, Thomas D, Strebel K, Benarous R (Jul 1998). "A novel human WD protein, h-beta TrCp, that interacts with HIV-1 Vpu connects CD4 to the ER degradation pathway through an F-box motif". Mol Cell. 1 (4): 565–574. doi:10.1016/S1097-2765(00)80056-8. PMID9660940.
↑ 5.05.15.2Busino, L.; Donzelli, M.; Chiesa, M.; Guardavaccaro, D.; Ganoth, D.; Dorrello, N.; Hershko, A.; Pagano, M.; Draetta, G. F. (2003). "Degradation of Cdc25A by β-TrCP during S phase and in response to DNA damage". Nature. 426 (6962): 87–91. doi:10.1038/nature02082. PMID14603323.
↑ 7.07.17.2Guardavaccaro, D.; Kudo, Y.; Boulaire, J.; Barchi, M.; Busino, L.; Donzelli, M.; Margottin-Goguet, F.; Jackson, P. K.; Yamasaki, L.; Pagano, M. (2003). "Control of meiotic and mitotic progression by the F box protein beta-Trcp1 in vivo". Developmental Cell. 4 (6): 799–812. doi:10.1016/S1534-5807(03)00154-0. PMID12791266.
↑ 8.08.1Margottin-Goguet, F.; Hsu, J. Y.; Loktev, A.; Hsieh, H. M.; Reimann, J. D.; Jackson, P. K. (2003). "Prophase destruction of Emi1 by the SCF(betaTrCP/Slimb) ubiquitin ligase activates the anaphase promoting complex to allow progression beyond prometaphase". Developmental Cell. 4 (6): 813–826. doi:10.1016/S1534-5807(03)00153-9. PMID12791267.
↑ 11.011.1Peschiaroli, A.; Dorrello, N. V.; Guardavaccaro, D.; Venere, M.; Halazonetis, T.; Sherman, N. E.; Pagano, M. (2006). "SCFβTrCP-Mediated Degradation of Claspin Regulates Recovery from the DNA Replication Checkpoint Response". Molecular Cell. 23 (3): 319–329. doi:10.1016/j.molcel.2006.06.013. PMID16885022.
↑ 12.012.1Mailand, N.; Bekker-Jensen, S.; Bartek, J.; Lukas, J. (2006). "Destruction of Claspin by SCFβTrCP Restrains Chk1 Activation and Facilitates Recovery from Genotoxic Stress". Molecular Cell. 23 (3): 307–318. doi:10.1016/j.molcel.2006.06.016. PMID16885021.
↑ 13.013.1Mamely, I.; Van Vugt, M. A. M.; Smits, V. A.; Semple, J. I.; Lemmens, B.; Perrakis, A.; Medema, R. H.; Freire, R. (2006). "Polo-like Kinase-1 Controls Proteasome-Dependent Degradation of Claspin during Checkpoint Recovery". Current Biology. 16 (19): 1950–1955. doi:10.1016/j.cub.2006.08.026. PMID16934469.
↑ 14.014.1Dorrello, N. V.; Peschiaroli, A.; Guardavaccaro, D.; Colburn, N. H.; Sherman, N. E.; Pagano, M. (2006). "S6K1- and TRCP-Mediated Degradation of PDCD4 Promotes Protein Translation and Cell Growth". Science. 314 (5798): 467–471. doi:10.1126/science.1130276. PMID17053147.
↑ 20.020.1Latres, E.; Chiaur, D. S.; Pagano, M. (1999). "The human F box protein β-Trcp associates with the Cul1/Skp1 complex and regulates the stability of β-catenin". Oncogene. 18 (4): 849–854. doi:10.1038/sj.onc.1202653. PMID10023660.
↑ 22.022.122.2Cenciarelli, C.; Chiaur, D. S.; Guardavaccaro, D.; Parks, W.; Vidal, M.; Pagano, M. (1999). "Identification of a family of human F-box proteins". Current Biology. 9 (20): 1177–1179. doi:10.1016/S0960-9822(00)80020-2. PMID10531035.
↑Semplici F, Meggio F, Pinna LA, Oliviero S (June 2002). "CK2-dependent phosphorylation of the E2 ubiquitin conjugating enzyme UBC3B induces its interaction with beta-TrCP and enhances beta-catenin degradation". Oncogene. 21 (25): 3978–87. doi:10.1038/sj.onc.1205574. PMID12037680.
↑ 24.024.124.224.3Suzuki H, Chiba T, Suzuki T, Fujita T, Ikenoue T, Omata M, Furuichi K, Shikama H, Tanaka K (January 2000). "Homodimer of two F-box proteins betaTrCP1 or betaTrCP2 binds to IkappaBalpha for signal-dependent ubiquitination". J. Biol. Chem. 275 (4): 2877–84. doi:10.1074/jbc.275.4.2877. PMID10644755.
↑ 25.025.1Min, K. -W.; Hwang, J. W.; Lee, J. S.; Park, Y.; Tamura, T. A.; Yoon, J. B. (2003). "TIP120A Associates with Cullins and Modulates Ubiquitin Ligase Activity". Journal of Biological Chemistry. 278 (18): 15905–15910. doi:10.1074/jbc.M213070200. PMID12609982.
↑Mantovani F, Banks L (October 2003). "Regulation of the discs large tumor suppressor by a phosphorylation-dependent interaction with the beta-TrCP ubiquitin ligase receptor". J. Biol. Chem. 278 (43): 42477–86. doi:10.1074/jbc.M302799200. PMID12902344.
↑Fong A, Sun SC (June 2002). "Genetic evidence for the essential role of beta-transducin repeat-containing protein in the inducible processing of NF-kappa B2/p100". J. Biol. Chem. 277 (25): 22111–4. doi:10.1074/jbc.C200151200. PMID11994270.
↑Strack, P.; Caligiuri, M.; Pelletier, M.; Boisclair, M.; Theodoras, A.; Beer-Romero, P.; Glass, S.; Parsons, T.; Copeland, R. A.; Auger, K. R.; Benfield, P.; Brizuela, L.; Rolfe, M. (2000). "SCFβ-TRCP and phosphorylation dependent ubiquitination of IκBα catalyzed by Ubc3 and Ubc4". Oncogene. 19 (31): 3529–3536. doi:10.1038/sj.onc.1203647. PMID10918611.
↑Ougolkov, A.; Zhang, B.; Yamashita, K.; Bilim, V.; Mai, M.; Fuchs, S. Y.; Minamoto, T. (2004). "Associations Among -TrCP, an E3 Ubiquitin Ligase Receptor, -Catenin, and NF- B in Colorectal Cancer". JNCI Journal of the National Cancer Institute. 96 (15): 1161–1170. doi:10.1093/jnci/djh219. PMID15292388.
↑Muerkoster, S.; Arlt, A.; Sipos, B.; Witt, M.; Grossmann, M.; Klöppel, G.; Kalthoff, H.; Fölsch, U. R.; Schäfer, H. (2005). "Increased Expression of the E3-Ubiquitin Ligase Receptor Subunit TRCP1 Relates to Constitutive Nuclear Factor- B Activation and Chemoresistance in Pancreatic Carcinoma Cells". Cancer Research. 65 (4): 1316–1324. doi:10.1158/0008-5472.CAN-04-1626. PMID15735017.
↑Koch, A.; Waha, A.; Hartmann, W.; Hrychyk, A.; Schüller, U.; Waha, A.; Wharton Jr, K. A.; Fuchs, S. Y.; Von Schweinitz, D.; Pietsch, T. (2005). "Elevated Expression of Wnt Antagonists is a Common Event in Hepatoblastomas". Clinical Cancer Research. 11 (12): 4295–4304. doi:10.1158/1078-0432.CCR-04-1162. PMID15958610.
↑Spiegelman, V. S.; Tang, W.; Chan, A. M.; Igarashi, M.; Aaronson, S. A.; Sassoon, D. A.; Katoh, M.; Slaga, T. J.; Fuchs, S. Y. (2002). "Induction of Homologue of Slimb Ubiquitin Ligase Receptor by Mitogen Signaling". Journal of Biological Chemistry. 277 (39): 36624–36630. doi:10.1074/jbc.M204524200. PMID12151397.
Maniatis T (1999). "A ubiquitin ligase complex essential for the NF-kappaB, Wnt/Wingless, and Hedgehog signaling pathways". Genes Dev. 13 (5): 505–510. doi:10.1101/gad.13.5.505. PMID10072378.
Li L, Li HS, Pauza CD, et al. (2006). "Roles of HIV-1 auxiliary proteins in viral pathogenesis and host-pathogen interactions". Cell Res. 15 (11–12): 923–934. doi:10.1038/sj.cr.7290370. PMID16354571.
Bonaldo MF, Lennon G, Soares MB (1997). "Normalization and subtraction: two approaches to facilitate gene discovery". Genome Res. 6 (9): 791–806. doi:10.1101/gr.6.9.791. PMID8889548.
Yaron A, Hatzubai A, Davis M, et al. (1999). "Identification of the receptor component of the IkappaBalpha-ubiquitin ligase". Nature. 396 (6711): 590–594. doi:10.1038/25159. PMID9859996.
Wu C, Ghosh S (1999). "beta-TrCP mediates the signal-induced ubiquitination of IkappaBbeta". J. Biol. Chem. 274 (42): 29591–4. doi:10.1074/jbc.274.42.29591. PMID10514424.
Cenciarelli C, Chiaur DS, Guardavaccaro D, et al. (1999). "Identification of a family of human F-box proteins". Curr. Biol. 9 (20): 1177–9. doi:10.1016/S0960-9822(00)80020-2. PMID10531035.
Stone DM, Murone M, Luoh S, et al. (2000). "Characterization of the human suppressor of fused, a negative regulator of the zinc-finger transcription factor Gli". J. Cell Sci. 112. ( Pt 23): 4437–4448. PMID10564661.
Suzuki H, Chiba T, Suzuki T, et al. (2000). "Homodimer of two F-box proteins betaTrCP1 or betaTrCP2 binds to IkappaBalpha for signal-dependent ubiquitination". J. Biol. Chem. 275 (4): 2877–2884. doi:10.1074/jbc.275.4.2877. PMID10644755.
Sadot E, Simcha I, Iwai K, et al. (2000). "Differential interaction of plakoglobin and beta-catenin with the ubiquitin-proteasome system". Oncogene. 19 (16): 1992–2001. doi:10.1038/sj.onc.1203519. PMID10803460.
Chiaur DS, Murthy S, Cenciarelli C, et al. (2000). "Five human genes encoding F-box proteins: chromosome mapping and analysis in human tumors". Cytogenet. Cell Genet. 88 (3–4): 255–258. doi:10.1159/000015532. PMID10828603.
Strack P, Caligiuri M, Pelletier M, et al. (2000). "SCF(beta-TRCP) and phosphorylation dependent ubiquitinationof I kappa B alpha catalyzed by Ubc3 and Ubc4". Oncogene. 19 (31): 3529–3536. doi:10.1038/sj.onc.1203647. PMID10918611.
Kleijnen MF, Shih AH, Zhou P, et al. (2000). "The hPLIC proteins may provide a link between the ubiquitination machinery and the proteasome". Mol. Cell. 6 (2): 409–419. doi:10.1016/S1097-2765(00)00040-X. PMID10983987.