Rapidly progressive glomerulonephritis

Jump to navigation Jump to search
Rapidly progressive glomerulonephritis
ICD-10 N00-N08 with .7 suffix
DiseasesDB 3165

Rapidly progressive glomerulonephritis Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Rapidly progressive glomerulonephritis from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X-ray Findings

CT-scan Findings

MRI

Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Rapidly progressive glomerulonephritis On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Rapidly progressive glomerulonephritis

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Rapidly progressive glomerulonephritis

CDC on Rapidly progressive glomerulonephritis

Rapidly progressive glomerulonephritis in the news

Blogs on Rapidly progressive glomerulonephritis

Directions to Hospitals Treating Rapidly progressive glomerulonephritis

Risk calculators and risk factors for Rapidly progressive glomerulonephritis

For patient information click here

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Synonyms and keywords:: Crescentic glomerulonephritis; RPGN

Overview

Rapidly progressive glomerulonephritis (RPGN) is one of the few nephrological emergency. However, it fortunately only affects 1-4% of all cases of glomerulonephritis. It is a clinical syndrome that includes signs and symptoms of glomerulonephritis, including hematuria, proteinuria, and edema with signs of renal failure and diffuse crescent formation on histopathology. Without appropriate treatment, RPGN progresses into end-stage renal disease within several days to only a few months yielding a very poor prognosis and renal outcome. RPGN is classified based on the presence of absence of anti-neutrophil cytoplasmic antibody (ANCA) and anti-GBM antibodies. Due to its rarity, the pathogenesis of RPGN is poorly understood and most probably is related to the type of RPGN and the circulating antibodies associated with each type. Evidence on treatment options for RPGN is poor; but the use of glucocorticoids and cyclophosphamide is currently recommended. Basic research and clinical data are currently emerging to better understand the disease pathogenesis and optimal therapeutic options.

Classification

Old Classification

Following its initial description in 1914, crescenteric glomerulonephritis was first classified by Couser in 1988 based on features of immunofluorescence.[1]

Type I: Anti-GBM Glomerulonephritis

20% of patients
Presence of linear staining of glomerular basement membrane (GBM)

Type II: Pauci-Immune Glomerulonephritis

50% of patients
Absent or minimal immune deposits

Type III: Immune Complex-Mediated Glomerulonephritis

30% of patients
Presence of granular patterns of immune deposits within the glomerulus. Immune deposition may be associated with any of the following conditions:

  • Infections
  • Systemic illnesses
  • Other primary glomerular diseases

New Classification

Upon the detection of new serological markers such as anti-GBM antibodies and anti-neutrophil cytoplasmic antibodies (ANCA)[2], the classification of RPGN has changed to involve several types of primary glomerulonephritis that correspond to the quantity and quality of such findings in patients’ sera. ANCA and anti-GBM may co-exist in approximately 20% of the patients.[3]

Type I: Anti-GBM Disease

  • Anti-GBM antibody-mediated without pulmonary involvement
  • Goodpasture’s disease: Anti-GBM antibody-mediated with pulmonary hemorrhage

Type II: Immune Complex-Mediated Disease

Type III: Pauci-Immune Disease

ANCA positive

  • Idiopathic renal-limited vasculitis / renal-limited necrotizing crescenteric glomerulonephritis (NCGN)
  • Granulomatosis with polyangiitis (formerly “Wegener’s granulomatosis")
  • Microscopic polyangiitis
  • Churg-Strauss syndrome

Type IV: Mixed Anti-GBM and ANCA Associated Disease

Type V: Pauci-Immune

ANCA negative

Pathophysiology

The pathogenesis of RPGN is unclear and is poorly understood. Nonetheless, circulating factors are thought to play a significant role in the disease and its progression.[4] RPGN, as an outcome, seems to be actually related to the type of RPGN. As such, there does not seem to be a unifying pathophysiology, but rather a combination of pathways that lead to a similar renal outcome. Genetic susceptibility has been shown to be associated with elevated levels of circulating antibodies, such as anti-GBM and ANCA, but little has been elaborated.[3]

In type I anti-GBM glomerulonephritis, antibodies against the non-collagenous domain of alpha-3 chain of type IV collagen of the glomerular basement membrane with a linear pattern on immunofluorescence are responsible for renal involvement.[5][6][7] The granular distribution along the GBM exhibit IgG and C3 deposits. Crescent formation is predominantly due to the formation of fibrin/fibrinogen.[7]

In Type II pauci-immune glomerulonephritis, such as in polyangittis with granulomatosis (formerly Wegener granulomatosis) and polyarteritis nodosa, findings of p-ANCA and c-ANCA in patients are considered landmarks in understanding these diseases; but their true significance has not yet been delineated.[4][8] Studies have shown that ANCA may in fact interact with neutrophils due to the presence of myeloperixoidases on the surface of neutrophils. The interaction drives neutrophils to undergo activation via oxidative burst that finally leads to their “dose-dependent” degranulation and release of toxic oxygen radicals.[4] TNF priming also seems to play an important role in the ANCA-induced degranulation of neutrophils.[9][10] As such, it is perhaps that TNF production during infections and inflammatory diseases in vivo may prime neutrophils in ANCA-positive patients to facilitate neutrophilic activation and subsequent pro-inflammatory cascade of RPGN disease.[4][9][10]

While the majority of patients with pauci-immune RPGN indeed have elevated levels of ANCA, the remaining 20% of patients with the same disease do not. Interestingly, 30% of patients in remission continue to have elevated levels of ANCA. Both these problematic findings raise the question of the actual importance of ANCA in the pathogenesis of RPGN.[11] A novel hypothesis currently suggests that RPGN is in fact a podocytopathy, defined as an intrinsic disease of the podocytes that normally maintains glomerular capillary membranes.( 16906157) As such, it is thought that the CXCR4 and VHL-HIF pathway target gene expression in renal biopsies, based on experimental studies on mice.[12]

Causes

Primary RPGN

RPGN may be a primary condition. The diagnosis of primary glomerulonephritis is made when the clinical syndrome of the disease complies with the new classification of RPGN based on the 5 types of disease. Nonetheless, ruling out other causes of RPGN is necessary before the diagnosis of primary RPGN is made.

The cause of ANCA levels in patients with ANCA-associated glomerulonephritis is not known. Environmental and genetic factors have been postulated. It is believed that infectious etiologies, such as arboviruses, may be contributory. These findings are based only on observations and small studies that patients with ANCA-associated glomerulonephritis are more commonly diagnosed during “flu season”, flu-like prodrome is usually the most common presenting symptoms of these patients, and presence of serological proof of previous arbovirus infection. Further disease progression in ANCA-associated diseases into clinical syndromes of polyarteritis nodosa and Wegener granulomatosis has been postulated to be caused by activation of autoantibody-induced leukocytes.[13] However, no consistent validation of such claims has been made.

Secondary RPGN

Infections

  • Infective endocarditis
  • Sepsis
  • HBV infection with vasculitis or cryoglobulinemia
  • HCV infection with vasculitis or cryoglobulinemia

Drugs

  • Allopurinol
  • D-penicillamine
  • Hydralazine
  • Rifampin

Multi-Organ Disease

  • Systemic lupus erythematosus
  • Henoch-Schonlein purpura
  • Systemic necrotizing vasculitis
  • Relapsing polychondritis
  • Cryoglobulinemia
  • Other vasculitides

Malignancies

  • Colon cancer
  • Pulmonary cancer
  • Lymphoma

Other Conditions

  • Behcet’s disease
  • Membranoproliferative glomerulonephritis
  • IgA nephropathy
  • Poststreptococcal glomerulonephritis
  • Hereditary nephritis

Differentiating Rapidly progressive glomerulonephritis from other Diseases

Epidemiology and Demographics

Risk Factors

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Criteria | History and Symptoms | Physical Examination | Laboratory Findings | CT | MRI | Ultrasound | Other Imaging Findings | Other Diagnostic Studies

Treatment

Medical Therapy | Surgery | Primary Prevention | Secondary Prevention | Cost-Effectiveness of Therapy | Future or Investigational Therapies

Case Studies

Case #1

References

  1. Couser WG (1988). "Rapidly progressive glomerulonephritis: classification, pathogenetic mechanisms, and therapy". Am J Kidney Dis. 11 (6): 449–64. PMID 3287904.
  2. Hricik DE, Chung-Park M, Sedor JR (1998). "Glomerulonephritis". N Engl J Med. 339 (13): 888–99. doi:10.1056/NEJM199809243391306. PMID 9744974.
  3. 3.0 3.1 Short AK, Esnault VL, Lockwood CM (1995). "Anti-neutrophil cytoplasm antibodies and anti-glomerular basement membrane antibodies: two coexisting distinct autoreactivities detectable in patients with rapidly progressive glomerulonephritis". Am J Kidney Dis. 26 (3): 439–45. PMID 7544065.
  4. 4.0 4.1 4.2 4.3 Falk RJ, Terrell RS, Charles LA, Jennette JC (1990). "Anti-neutrophil cytoplasmic autoantibodies induce neutrophils to degranulate and produce oxygen radicals in vitro". Proc Natl Acad Sci U S A. 87 (11): 4115–9. PMC 54058. PMID 2161532.
  5. Ramaswami A, Kandaswamy T, Rajendran T, Aung H, Jacob CK, Zinna HS; et al. (2008). "Goodpasture's syndrome with positive C-ANCA and normal renal function: a case report". J Med Case Rep. 2: 223. doi:10.1186/1752-1947-2-223. PMC 2475522. PMID 18590526.
  6. Lewis EJ, Cavallo T, Harrington JT, Cotran RS (1971). "An immunopathologic study of rapidly progressive glomerulonephritis in the adult". Hum Pathol. 2 (2): 185–208. PMID 4937848.
  7. 7.0 7.1 Cunningham RJ, Gilfoil M, Cavallo T, Brouhard BH, Travis LB, Berger M; et al. (1980). "Rapidly progressive glomerulonephritis in children: a report of thirteen cases and a review of the literature". Pediatr Res. 14 (2): 128–32. doi:10.1203/00006450-198002000-00012. PMID 7360526.
  8. Davies DJ, Moran JE, Niall JF, Ryan GB (1982). "Segmental necrotising glomerulonephritis with antineutrophil antibody: possible arbovirus aetiology?". Br Med J (Clin Res Ed). 285 (6342): 606. PMC 1499415. PMID 6297657.
  9. 9.0 9.1 Klebanoff SJ, Vadas MA, Harlan JM, Sparks LH, Gamble JR, Agosti JM; et al. (1986). "Stimulation of neutrophils by tumor necrosis factor". J Immunol. 136 (11): 4220–5. PMID 3009619.
  10. 10.0 10.1 Gallin JI, Fletcher MP, Seligmann BE, Hoffstein S, Cehrs K, Mounessa N (1982). "Human neutrophil-specific granule deficiency: a model to assess the role of neutrophil-specific granules in the evolution of the inflammatory response". Blood. 59 (6): 1317–29. PMID 7044447.
  11. Hedger N, Stevens J, Drey N, Walker S, Roderick P (2000). "Incidence and outcome of pauci-immune rapidly progressive glomerulonephritis in Wessex, UK: a 10-year retrospective study". Nephrol Dial Transplant. 15 (10): 1593–9. PMID 11007827.
  12. Ding M, Cui S, Li C, Jothy S, Haase V, Steer BM; et al. (2006). "Loss of the tumor suppressor Vhlh leads to upregulation of Cxcr4 and rapidly progressive glomerulonephritis in mice". Nat Med. 12 (9): 1081–7. doi:10.1038/nm1460. PMID 16906157.
  13. Falk RJ, Hogan S, Carey TS, Jennette JC (1990). "Clinical course of anti-neutrophil cytoplasmic autoantibody-associated glomerulonephritis and systemic vasculitis. The Glomerular Disease Collaborative Network". Ann Intern Med. 113 (9): 656–63. PMID 2221646.

Template:Nephrology

de:Rasch progressive Glomerulonephritis

Template:WH Template:WS