Neutropenia overview

Revision as of 02:49, 7 November 2016 by Daniel Gerber (talk | contribs) (Causes)
Jump to navigation Jump to search

Neutropenia Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Neutropenia from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Chest X Ray

CT

MRI

Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Neutropenia overview On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Neutropenia overview

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Neutropenia overview

on Neutropenia overview

Neutropenia overview in the news

Blogs on Neutropenia overview

Directions to Hospitals Treating Neutropenia

Risk calculators and risk factors for Neutropenia overview

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] Associate Editor(s)-in-Chief: Daniel A. Gerber, M.D. [2]

Overview

Neutropenia is a hematological disorder characterized by an abnormally low number of neutrophil granulocytes (a type of white blood cell). Neutrophils usually make up 50-70% of circulating white blood cells and serve as the primary defense against infections by destroying bacteria in the blood. Hence, patients with neutropenia are more susceptible to bacterial infections and without prompt medical attention, the condition may become life-threatening. Neutropenia can be acute or chronic depending on the duration of the illness. A patient has chronic neutropenia if the condition lasts for greater than 3 months. It is sometimes used interchangeably with the term leukopenia. However, neutropenia is more properly considered a subset of leukopenia as a whole. Some patients, such as those with constitutional/benign ethnic neutropenia, suffer relatively few complications, however neutropenia related to cytotoxic chemotherapy, hematopoietic stem cell transplant, or other causes of bone marrow suppression may present as a medical emergency.

Classification

Calculated based on blood count differential, neutropenia is defined as an absolute neutrophil count (ANC) less than 1,500 cells per microliter and is calculated by multiplying the total white blood cell (WBC) count by the percentage of neutrophils (including both mature neutrophils and band forms).

  • Mild Neutropenia: ANC 1,000-1500 cells/microliter
  • Moderate Neutropenia: ANC 500-1000 cells/microliter
  • Severe Neutropenia (Agranulocytosis): ANC <500 cells/microliter

Pathophysiology

Neutropenia develops as a result of one of the three following mechanisms:

  1. Impaired granulocyte production
    • Hematologic malignancy with bone marrow infiltration
    • Myelosuppressive chemotherapy or other medications that are toxic to the bone marrow
    • Nutritional deficiencies
  2. Margination: (process where free flowing blood cells exit circulation)
    • Splenic sequestration
    • Adherence to the vascular endothelium
  3. Peripheral destruction

Causes

The most common etiologies are constitutional or benign ethnic neutropenia (BEN) and drug-induced neutropenia. While the former is typically benign, as the title suggests, and not associated with significant complications, drug-induced neutropenia is often related to underlying cancer or medications that can suppress the bone marrow and can be severe and life-threatening if not identified and treated urgently.

Epidemiology and Demographics

Neutropenia is typically identified in at-risk patients undergoing cytotoxic chemotherapy or on other myelosuppressive medications. As noted above, some ethnicities have an unusually high prevalence of incidentally identified mild neutropenia, also termed constitutional or benign ethnic neutropenia (BEN). This is most common in blacks, Yemenites, West Indians, and Arab Jordanians and is suggested to be caused by a mutation in the Duffy antigen on red blood cells that helps to confer resistance to malaria. As the name suggests, these cases are typically mild and do not result in immunosuppression.


History and Symptoms

Neutropenia can go undetected until the patient develops secondary, and often severe, infections or sepsis. Some common infections can take an unexpected course in neutropenic patients; formation of pus, for example, can be notably absent, as this requires circulating neutrophil granulocytes. History should focus on symptoms suggestive of malignancy or infections, patient or family history of autoimmune or immunodeficiency disorders, risk factors for infections including HIV and hepatitis, and any unusual dietary practices or history of bariatric surgery. Medications should be reviewed with particular attention to chemotherapeutics, antibiotics, antiepileptics, and psychoactive drugs as well as documenting any new medications started within the preceding few months.


Common presenting symptoms in neutropenic patients include:

Physical Examination

A rectal examination should not be performed in a patient with neutropenia.

Medical Therapy

There is no specific therapy for neutropenia itself aside from removing the offending agents in drug-induced cases and treating the underlying disease in other, however recombinant G-CSF (granulocyte-colony stimulating factor) can be considered to speed myeloid reconstitution.

Asymptomatic, mild to moderate neutropenia can often be monitored closely on an outpatient basis with serial CBCs and evaluation for medications, infections, or alternative sources of neutropenia as described in detail above. Offending medications are often held and the patient is monitored for response to discontinuation while evaluating for alternative, more concerning etiologies. With mild neutropenia, medications can often be reintroduced after neutrophil counts recover as the neutropenia is typically dose-dependent.

Patients who are febrile, acutely ill, or with severe neutropenia often warrant urgent hospitalization for close monitoring and treatment. Offending medications must be discontinued as drug-induced agranulocytosis presents up to a 10% mortality and is very likely to recur if the offending agent is restarted.

Resuscitate all patients screening positive for sepsis syndromes per goal-directed therapy and the surviving sepsis campaign. Initiate empiric antibiotics as early as possible after cultures are drawn and within 60 minutes of presentation as there is significantly higher mortality when antibiotic administration is delayed [1] [2] [3]. Initial antibiotic selection should provide broad coverage of the most common, most virulent, and most likely pathogens and should be bactericidal so as not to rely on assistance from the host's impaired immune system. Remove central venous catheters when possible if there is suspicion for infection or with positive blood cultures.


Low risk patients

ANC>100 cells/microliter, normal liver and renal function, normal chest x-ray, no evidence of central line infection, MASCC >21, and duration of neutropenia expected <7 days in a patient with close monitoring and access to medical care.

  • Ciprofloxacin 500mg PO BID + amoxicillin/clavulanate 500mg PO TID


High risk patients

Hospitalize and initiate empiric parenteral antimicrobial therapy. IDSA guidelines recommend initial monotherapy as below.

  • Cefepime 2 g IV Q8H
  • Meropenem 1 g IV Q8H
  • Imipenem/cilastatin 500 mg IV Q6H
  • Piperacillin/tazobactam 4.5 g IV Q6H
  • Ceftazidime 2 g IV Q8H (recent data shows increasing resistance to ceftazidime and inferior Gram-positive coverage to alternative regimens)


Indications for resistant Gram-positive coverage

Vancomycin or linezolid is NOT recommended as part of initial treatment unless one of the following is present and, if started, should be discontinued after 2-3 days if there is no evidence of Gram-positive infection.

  • Hemodynamic instability
  • Suspected catheter-associated infection
  • Mucositis or cellulitis
  • Pneumonia
  • History of MRSA infection or colonization
  • Gram-positive bacteremia prior to final culture results
  • Recent fluoroquinolone prophylaxis


Alternative regimens

  • Pneumonia: Broaden coverage to include Vancomycin or Linezolid and a macrolide or fluoroquinolone. Consider PJP.
  • Diarrhea: Evaluate for C.difficile, treat if positive.
  • Sinusitis: Urgent ENT evaluation. Broaden coverage to include invasive fungi.
  • Oral ulceration: Consider broadening coverage to include Acyclovir for HSV and/or Fluconazole for Candida.
  • BMT: Evaluate for CMV. Consider broadening coverage to include Ganciclovir.
  • Hemodynamic instability: Broaden coverage to include resistant Gram-positive, Gram-negative, and anaerobic bacteria and fungi, typically with Vancomycin or Linezolid, a Carbapenem, and Amphotericin, Voriconazole, or Caspofungin.


Persistent Fever

Continue empiric therapy until either culture data is available to direct management or after 3-5 days if the patient fails to improve. The median time to defercescence in adequately treated patients is 5 days with hematologic malignancies and 2-3 days with solid tumors. If the patient is still febrile or develops recurrent fevers after this time period further work up is suggested.

  1. Re-evaluate sources of infection
  2. Re-evaluate indications for resistant Gram-positive coverage and consider adding vancomycin or linezolid.
  3. Re-evaluate indications for resistant Gram-negative organisms and anaerobes and consider broadening to carbapenem antibiotics.
  4. Consider fungal coverage in high risk patients if fevers persist after 4-7 days of appropriate antibiotic coverage and duration of neutropenia is expected to last >7 days. Consider the following antifungals.
    • Caspofungin 70 mg IV x 1 dose, then 50mg IV daily
    • Liposomal Amphotericin B 3 mg/kg/day
    • Voriconazole 6 mg/kg IV Q12H x 2 doses, then 4 mg/kg IV Q12H

Caspofungin provides excellent coverage for Candida and is well tolerated, however nodular pulmonary infiltrates warrant coverage of Aspergillus with Voriconazole or Amphotericin B as echinocandins do not provide adequate coverage of Aspergillus or endemic fungi.

In cases of severe or refractory febrile neutropenia, consider granulocyte colony stimulating factor (G-CSF) to facilitate neutrophil count recovery, however routine use is NOT recommended as it does not reduce duration of fever or mortality despite shortening duration of neutropenia [4].


Duration of Antimicrobials

Documented infection
Continue antimicrobials as directed by culture data. Continue treatment for the standard duration for that particular infection and until myeloid recovery (ANC>500 cells/microliter). If counts recover prior to completing the treatment course, consider transition to an oral regimen guided by culture data.
Negative Cultures
Continue empiric antimicrobial regimen until myeloid recovery (ANC>500 cells/microliter). If afebrile with no evidence of ongoing infection, consider transition to oral regimen (e.g. Ciprofloxacin + Amoxicillin/Clavulanate) and continue until myeloid recovery.

References

  1. Schimpff S, Satterlee W, Young VM, Serpick A (1971). "Empiric therapy with carbenicillin and gentamicin for febrile patients with cancer and granulocytopenia". N Engl J Med. 284 (19): 1061–5. PMID 4994878.
  2. Kumar A, Roberts D, Wood KE, Light B, Parrillo JE, Sharma S, Suppes R, Feinstein D, Zanotti S, Taiberg L, Gurka D, Kumar A, Cheang M (2006). "Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock". Crit Care Med. 34 (6): 1589–96. PMID 16625125.
  3. Rosa RG, Goldani LZ. (2014). "Cohort study of the impact of time to antibiotic administration on mortality in patients with febrile neutropenia". Antimicrob Agents Chemother. 58 (7): 3799–803. PMID 24752269.
  4. Aapro MS; et al. (2011). "2010 update of EORTC guidelines for the use of granulocyte-colony stimulating factor to reduce the incidence of chemotherapy-induced febrile neutropenia in adult patients with lymphoproliferative disorders and solid tumors". Eur J Cancer. 47 (1): 8–32. PMID 21095116.

Template:WH Template:WS