Glioblastoma multiforme classification
Glioblastoma multiforme Microchapters |
Diagnosis |
---|
Treatment |
Case Studies |
Glioblastoma multiforme classification On the Web |
American Roentgen Ray Society Images of Glioblastoma multiforme classification |
Risk calculators and risk factors for Glioblastoma multiforme classification |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]Associate Editor(s)-in-Chief: Marjan Khan M.B.B.S.[2]
Overview
Glioblastoma multiforme may be classified into several subtypes based on the origin (primary and secondary) and molecular alterations (classic, proneural, mesenchymal, and neural).[1][2]
Classification
Based on the origin
Glioblastoma multiforme may be classified according to the origin into two subtypes: Primary and secondary.[1]
Subtype of Glioblastoma multiforme | Characteristic features |
---|---|
|
|
|
|
- Primary GBM is the most common form (about 95%) and arises typically de novo, within 3–6 months, in older patients.
- Secondary GBM arises from prior low-grade astrocytomas (over 10–15 years) in younger patients.
- Primary and secondary forms show some molecular differences.
- The end result of both sub type is same since the same pathways are affected and respond similarly to current standard treatment.
- Primary GBM often has amplified and mutated epidermal-growth factor receptor (EGFR) which encodes altered EGF receptor.
- Secondary GBM has increased signaling through PDGF-A receptor.
- Both types of mutations lead to increased tyrosine kinase receptor (TKR) activity and consequently to activation of RAS and PI3K pathways.
Based on the molecular alterations
Glioblastoma multiforme may be classified according to the molecular alterations into four subtypes:[2]
- Classic
- Proneural
- Mesenchymal
- Neural
References
- ↑ 1.0 1.1 Classification of Glioblastoma multiforme. Dr Dylan Kurda and Dr Frank Gaillard et al. Radiopaedia 2015. http://radiopaedia.org/articles/Glioblastoma
- ↑ 2.0 2.1 Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD; et al. (2010). "Integrated genomic analysis identifies clinically relevant subtypes of Glioblastoma multiforme characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1". Cancer Cell. 17 (1): 98–110. doi:10.1016/j.ccr.2009.12.020. PMC 2818769. PMID 20129251.