Hypertrophic cardiomyopathy differential diagnosis

Jump to navigation Jump to search

Hypertrophic Cardiomyopathy Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Hypertrophic Cardiomyopathy from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X Ray

Echocardiography and Ultrasound

CT scan

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Interventions

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Hypertrophic cardiomyopathy differential diagnosis On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Hypertrophic cardiomyopathy differential diagnosis

CDC on Hypertrophic cardiomyopathy differential diagnosis

Hypertrophic cardiomyopathy differential diagnosis in the news

Blogs on Hypertrophic cardiomyopathy differential diagnosis

Directions to Hospitals Treating Hypertrophic cardiomyopathy

Risk calculators and risk factors for Hypertrophic cardiomyopathy differential diagnosis

Editors-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Overview

The diagnostic imaging modality of choice is echocardiography. There are multiple echocardiographic features that distinguish hypertrophic cardiomyopathy from other conditions that lead to myocardial hypertrophy. In hypertrophic cardiomyopathy, the left ventricle is not dilated, and there is no other condition that would account for the magnitude of hypertrophy. The hypertrophy is often asymmetric.

Differential Diagnosis

HCM must be distinguished from the following disorders:

Athlete's heart

Several criteria can be used to distinguish these two entities:

The degree of left ventricular wall thickness

  • In athlete's heart the LVH is symmetric and less than or equal to 12 mm
  • Rarely the LV thickness can be 14-16 mm and this makes it difficult to distinguish from HOCM. Athletes who engage in strength training may develop this pattern, ahtletes who engage in endurance training do not.
  • If the degree of thickening is out of proportion to the type and intensity of exercise, this suggests HOCM

The pattern of left ventricular wall thickness

  • Athleste's heart is symmetric
  • HOCM is more often asymmetric, but may in some cases be symmetric

The left ventricular cavity size

  • HOCM has smaller LV cavitary dimensions

Hypertensive heart disease

Aortic stenosis

Cardiac amyloidosis

Non-Compaction cardiomyopathy

Quite often, HCM can be mistaken for a condition known as athlete’s heart. Both involve growth of the myocardium, however the latter generally is not correlated with incidences of SCD. While HCM can be linked to family history, athlete’s heart arises purely as a function of intense exercise (usually at least an hour a day, everyday. Since the body is operating at high training levels, the heart adapts and grows in order to pump blood more efficiently. Stoppage of exercise for three months generally leads to a decrease in wall/septum thickness in those with athlete’s heart, whereas those with HCM exhibit no decline.

People with athlete’s heart do not exhibit an abnormally enlarged septum, and the growth of heart muscle at the septum and free ventricular wall is symmetrical. The asymmetrical growth seen in HCM results in a less-dilated left ventricle. This in turn leads to a smaller volume of blood leaving the heart with each beat.

Athlete's Heart HCM
Septum thickness <15 mm >15 mm
Symmetry Yes (for septum and LV wall) No (septum much thicker
Family history None Possibly
Deconditioning Reduction within 3 months None

References

Template:WH Template:WS