Bioelectromagnetics
Editor-in-Chief: Robert G. Schwartz, M.D. [1], Piedmont Physical Medicine and Rehabilitation, P.A.;
Bioelectromagnetics is the study of how electromagnetic fields interact with and influence biological processes; almost the same as radiobiology of non-ionizing radiation. Common areas of investigation include the mechanism of animal migration and navigation using the geomagnetic field, studying the potential effects of man-made sources of electromagnetic fields, such as those produced by the power distribution system and mobile phones, and developing novel therapies to treat various conditions.
While several treatments based on the use of magnetic fields have been reported in peer-reviewed journals, the only ones that have been approved by the FDA are the use of pulsed magnetic fields to aid non-union bone fractures. Transcranial magnetic stimulation is currently under active study in multiple research centres, and will likely become an approved therapy in the future.
Bioelectromagnetics is not to be confused with bioelectromagnetism, which deals with the ability of life to produce its own electromagnetism.
Introduction: general features of observed interactions
Thermal vs nonthermal nature
Most of the molecules that make up the human body interact only weakly with electromagnetic fields (EMF) that are in the radiofrequency or extremely low frequency bands. One basic interaction is the absorption of energy from the EMF, which can cause tissue to heat up; more intense field exposures will produce greater heating. This heat deposition can lead to biological effects ranging from discomfort to protein denaturation to burns. Many nations and regulatory bodies (for example, the International Commission on Non-Ionizing Radiation Protection) have established safety guidelines to limit the EMF exposure to a non-thermal level, which can either be defined as heating only to the point where the excess heat can be dissipated/radiated away, or as some small temperature increase that is not detectable with current instruments (such as a heating of less than 0.1°C).
However, many studies have shown that biological effects may be present for these non-thermal exposures. Various mechanisms have been proposed to explain biological effects from non-thermal exposures (Binhi, 2002), and there may be several mechanisms at work underlying the differing phenomena observed. Biological effects of weak electromagnetic fields are the subject of study in magnetobiology.
Behavioral effects
Many subtle, and at times, not-so-subtle effects on behaviour have been reported from exposure to magnetic fields, with a particular focus in research on pulsed magnetic fields. The specific pulseform used appears to be an important factor for the behavioural effect seen. For instance, a pulsed magnetic field originally designed for magnetic resonance spectroscopic imaging was found to alleviate symptoms in bipolar patients (Rohan et al, 2004), while another MRI pulse had no effect. A whole-body exposure to a pulsed magnetic field was found to alter standing balance (Thomas et al, 2001) and pain perception (Shupak et al, 2004) in other studies.
A strong changing magnetic field can induce electrical currents in conductive tissue, such as the brain. Since the magnetic field will penetrate tissue, it can be generated outside of the head to induce currents within, hence Transcranial magnetic stimulation. These currents will depolarize neurons in a selected part of the brain, leading to changes in the patterns of neural activation. Essentially, the effect of TMS is to change the information content in the neurons. There is no structural or heating effect that may damage the tissue; only natural signals (action potentials) are generated in the target area. If there are any risks, these are due to the arrival of action potentials to synapses and the natural activation of the postsynaptic cell.
A number of scientists and clinicians are attempting to use TMS to replace electroconvulsive therapy (ECT) to treat disorders such as severe depression. Instead of one strong electric shock through the head as in ECT, a large number of relatively weak pulses are delivered in TMS treatment, typically at the rate of about 10 pulses per second.
If very strong pulses at a rapid rate are delivered to the brain, the induced currents can cause convulsions. Sometimes this is done deliberately in order to treat depression such as in ECT.
See also
- Bioelectromagnetism
- Biophysics
- Specific absorption rate and Electromagnetic radiation and health.
- Mobile phone radiation and health
- Michael Persinger
References
Organizations
- The Bioelectromagnetics Society (BEMS)
- European BioElectomagnetics Association (EBEA)
- Society for Physical Regulation in Biology and Medicine (SPRBM) (formerly the Bioelectrical Repair and Growth Society, BRAGS)
- International Society for Bioelectromagnetism (ISBEM)
Books
- Robert O. Becker and Andrew A. Marino, Electromagnetism and Life, State University of New York Press, Albany, 1982 (ISBN 0-87395-561-7)
- Robert O. Becker, The Body Electric: Electromagnetism and the Foundation of Life, William Morrow & Co, 1985 (ISBN 0-688-00123-8)
- Robert O. Becker, Cross Currents: The Promise of Electromedicine, the Perils of Electropollution, Tarcher, 1989 (ISBN 0-87477-536-1)
- Jaakko Malmivuo and Robert Plonsey, Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields, Oxford University Press, 1995 (ISBN 0-19-505823-2)
- David O. Carpenter and Sinerik Ayrapetyan, Biological Effects of Electric and Magnetic Fields, Volume 1 : Sources and Mechanisms, Academic Press, 1994 (ISBN 0-12-160261-3)
- David O. Carpenter and Sinerik Ayrapetyan, Biological Effects of Electric and Magnetic Fields : Beneficial and Harmful Effects (Vol 2), Academic Press, 1994 (ISBN 0-12-160261-3)
- A. Chiabrera (Editor), Interactions Between Electromagnetic Fields and Cells, Springer, 1985 (ISBN 0-306-42083-X)
- Mary E. O'Connor (Editor), et al, Emerging Electromagnetic Medicine, Springer, 1990 (ISBN 0-387-97224-2)
- William F. Horton and Saul Goldberg, Power Frequency Magnetic Fields and Public Health, CRC Press, 1995 (ISBN 0-8493-9420-1)
- Riadh W. Y. Habash, Electromagnetic Fields and Radiation: Human Bioeffects and Safety, Marcel Dekker, 2001 (ISBN 0-8247-0677-3)
- Ho Mae-Wan, et al, Bioelectrodynamics and Biocommunication, World Scientific, 1994 (ISBN 981-02-1665-3)
- Paul Brodeur, Currents of Death, Simon & Schuster, 2000 (ISBN 0-7432-1308-4)
- Binhi V.N. Magnetobiology: Underlying Physical Problems. San Diego: Academic Press, 2002. ISBN 0-12-100071-0. http://www.elsevier.com/wps/find/bookdescription.cws_home/699798/description
Journals
- Bioelectromagnetics, Wiley, 1985-present, (ISSN 0197-8462)
- Bioelectrochemistry, Elsevier, 1974-present, (ISSN 1567-5394)
- International Journal of Bioelectromagnetism, ISBEM, 1999-present, (ISSN 1456-7865)
- BioMagnetic Research and Technology [2]
- Biofizika ("Biophysics", in Russian) (ISSN 0006-3509)
- Radiatsionnaya Bioliogiya Radioecologia ("Radiation Biology and Radioecology", in Russian) (ISSN 0869-8031)
Journal Articles
- Rohan et al., 2004. Am J Psychiatry. 161(1):93-8.
- Shupak et al., 2004. Neurosci Lett. 363(2):157-62.
- Thomas et al., 2001. Neurosci Lett. 309(1):17-20.