Neutropenia medical therapy

Revision as of 00:55, 17 November 2016 by Daniel Gerber (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Neutropenia Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Neutropenia from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Chest X Ray

CT

MRI

Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Neutropenia medical therapy On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Neutropenia medical therapy

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Neutropenia medical therapy

on Neutropenia medical therapy

Neutropenia medical therapy in the news

Blogs on Neutropenia medical therapy

Directions to Hospitals Treating Neutropenia

Risk calculators and risk factors for Neutropenia medical therapy

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] Associate Editor(s)-in-Chief: Daniel A. Gerber, M.D. [2]

Overview

There is no specific medical therapy for neutropenia. The goal of the medical therapy for neutropenia is to remove the offending agents in drug-induced cases, and treat the underlying disease in others. Recombinant granulocyte-colony stimulating factor (G-CSF) may be considered to accelerate myeloid reconstitution.

Medical Therapy

There is no specific medical therapy for neutropenia.
The goal of the medical therapy for neutropenia is to remove the offending agents in drug-induced cases, and treat the underlying disease in others. Recombinant granulocyte-colony stimulating factor (G-CSF) may be considered to accelerate myeloid reconstitution.
Asymptomatic, mild to moderate neutropenia can often be monitored closely on an outpatient basis with serial CBCs and evaluation for medications, infections, or alternative sources of neutropenia. Offending medications are often temporarily halted and the patient is monitored for response to discontinuation. With mild neutropenia, medications can often be reintroduced after neutrophil counts recover as the neutropenia is typically dose-dependent.
Patients who are febrile, acutely ill, or with severe neutropenia often warrant urgent hospitalization for close monitoring and treatment. Offending medications must be discontinued as drug-induced agranulocytosis presents up to a 10% mortality and is very likely to recur if the offending agent is restarted.
Empiric antibiotics should be implemented as early as possible after cultures are drawn and within 60 minutes of presentation, as there is significantly higher mortality when antibiotic administration is delayed.[1][2][3] Initial antibiotic selection should provide broad coverage of the most common, virulent, and likely pathogens, and should be bactericidal so as not to rely on assistance from the host's impaired immune system. Central venous catheters should be removed when possible if there is suspicion for infection or with positive blood cultures.

Febrile Neutropenia

Low risk patients: ANC>100 cells/microliter, normal liver and renal function, normal chest x-ray, no evidence of central line infection, MASCC >21, and duration of neutropenia expected <7 days in a patient with close monitoring and access to medical care.
  • Ciprofloxacin 500mg PO BID + amoxicillin/clavulanate 500mg PO TID
High risk patients: Hospitalize and initiate empiric parenteral antimicrobial therapy. IDSA guidelines recommend initial monotherapy as below.
  • Cefepime 2 g IV Q8H
  • Meropenem 1 g IV Q8H
  • Imipenem/cilastatin 500 mg IV Q6H
  • Piperacillin/tazobactam 4.5 g IV Q6H
  • Ceftazidime 2 g IV Q8H (recent data shows increasing resistance to ceftazidime and inferior Gram-positive coverage to alternative regimens)
Indications for resistant Gram-positive coverage: Vancomycin or linezolid is NOT recommended as part of initial treatment unless one of the following is present and, if started, should be discontinued after 2-3 days if there is no evidence of Gram-positive infection.
Persistent Fever: Continue empiric therapy until either culture data is available to direct management or after 3-5 days if the patient fails to improve. The median time to defercescence in adequately treated patients is 5 days with hematologic malignancies and 2-3 days with solid tumors. If the patient is still febrile or develops recurrent fevers after this time period further work up is suggested.
  1. Re-evaluate sources of infection
  2. Re-evaluate indications for resistant Gram-positive coverage and consider adding vancomycin or linezolid.
  3. Re-evaluate indications for resistant Gram-negative organisms and anaerobes and consider broadening to carbapenem antibiotics.
  4. Consider fungal coverage in high risk patients if fevers persist after 4-7 days of appropriate antibiotic coverage and duration of neutropenia is expected to last >7 days. :Consider the following antifungals.
Caspofungin provides excellent coverage for Candida and is well tolerated, however nodular pulmonary infiltrates warrant coverage of Aspergillus with Voriconazole or Amphotericin B as echinocandins do not provide adequate coverage of Aspergillus or endemic fungi.
Duration of Antimicrobials
  • Documented infection: Continue antimicrobials as directed by culture data. Continue treatment for the standard duration for that particular infection and until myeloid recovery (ANC>500 cells/microliter). If counts recover prior to completing the treatment course, consider transition to an oral regimen guided by culture data.
  • Negative Cultures: Continue empiric antimicrobial regimen until myeloid recovery (ANC>500 cells/microliter). If afebrile with no evidence of ongoing infection, consider transition to oral regimen (e.g. Ciprofloxacin + Amoxicillin/Clavulanate) and continue until myeloid recovery.

In cases of severe or refractory febrile neutropenia, consider granulocyte colony stimulating factor (G-CSF) to facilitate neutrophil count recovery, however routine use is NOT recommended as it does not reduce duration of fever or mortality despite shortening duration of neutropenia.[4]

References

  1. Schimpff S, Satterlee W, Young VM, Serpick A (1971). "Empiric therapy with carbenicillin and gentamicin for febrile patients with cancer and granulocytopenia". N Engl J Med. 284 (19): 1061–5. PMID 4994878.
  2. Kumar A, Roberts D, Wood KE, Light B, Parrillo JE, Sharma S, Suppes R, Feinstein D, Zanotti S, Taiberg L, Gurka D, Kumar A, Cheang M (2006). "Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock". Crit Care Med. 34 (6): 1589–96. PMID 16625125.
  3. Rosa RG, Goldani LZ. (2014). "Cohort study of the impact of time to antibiotic administration on mortality in patients with febrile neutropenia". Antimicrob Agents Chemother. 58 (7): 3799–803. PMID 24752269.
  4. Aapro MS; et al. (2011). "2010 update of EORTC guidelines for the use of granulocyte-colony stimulating factor to reduce the incidence of chemotherapy-induced febrile neutropenia in adult patients with lymphoproliferative disorders and solid tumors". Eur J Cancer. 47 (1): 8–32. PMID 21095116.