West nile virus infection future or investigational therapies

Revision as of 19:11, 18 September 2017 by WikiBot (talk | contribs) (Changes made per Mahshid's request)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

West nile virus infection Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating West nile virus infection from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Chest X Ray

CT

MRI

Echocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

West nile virus infection future or investigational therapies On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of West nile virus infection future or investigational therapies

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on West nile virus infection future or investigational therapies

CDC on West nile virus infection future or investigational therapies

West nile virus infection future or investigational therapies in the news

Blogs on West nile virus infection future or investigational therapies

Directions to Hospitals Treating West nile virus infection

Risk calculators and risk factors for West nile virus infection future or investigational therapies

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Alejandro Lemor, M.D. [2]

Overview

Human vaccines against WNV are under development, and they have shown promising results in phase I and II trials. Ribavirin and interferon alfa-2b are currently being studied for the treatment of WNV CNS infections, as both drugs have demonstrated benefit in in vitro studies.

Future or Investigational Therapies

Vaccine

  • Several vaccines are under development for WNV infection, but none has been definitively approved for clinical use. Experimental models in mice and horses have revealed promising results. Phase I and II trials have demonstrated safety and immunogenicity, but further research is still required.[1]
  • The following vaccines are under development:
  • ChimeriVax-WN02[2]
  • Chimeric WN/DEN4-3’delta30[3]
  • Clinical trial VRC303[4][5]
  • WN-80E[6][7]

Pharmacologic Therapy

  • Ribavirin has been administered to patients infected with WNV and have CNS involvement. It has demonstrated inhibition of the virus in human neural cells in vitro.[8][9]
  • Interferon alfa-2b has also shown benefit in in vitro studies against WNV CNS infection.[10]
  • Further studies need to be conducted to determine the efficacy and safety of interferon alfa-2b among patients with WNV infections.

References

  1. Brandler, Samantha; Tangy, Frederic (2013). "Vaccines in Development against West Nile Virus". Viruses. 5 (10): 2384–2409. doi:10.3390/v5102384. ISSN 1999-4915.
  2. Bruno Guy, Farshad Guirakhoo, Veronique Barban, Stephen Higgs, Thomas P. Monath & Jean Lang (2010). "Preclinical and clinical development of YFV 17D-based chimeric vaccines against dengue, West Nile and Japanese encephalitis viruses". Vaccine. 28 (3): 632–649. doi:10.1016/j.vaccine.2009.09.098. PMID 19808029. Unknown parameter |month= ignored (help)
  3. Marina De Filette, Sebastian Ulbert, Mike Diamond & Niek N. Sanders (2012). "Recent progress in West Nile virus diagnosis and vaccination". Veterinary research. 43: 16. doi:10.1186/1297-9716-43-16. PMID 22380523.
  4. Julie E. Ledgerwood, Theodore C. Pierson, Sarah A. Hubka, Niraj Desai, Steve Rucker, Ingelise J. Gordon, Mary E. Enama, Steevenson Nelson, Martha Nason, Wenjuan Gu, Nikkida Bundrant, Richard A. Koup, Robert T. Bailer, John R. Mascola, Gary J. Nabel & Barney S. Graham (2011). "A West Nile virus DNA vaccine utilizing a modified promoter induces neutralizing antibody in younger and older healthy adults in a phase I clinical trial". The Journal of infectious diseases. 203 (10): 1396–1404. doi:10.1093/infdis/jir054. PMID 21398392. Unknown parameter |month= ignored (help)
  5. Julie E. Martin, Theodore C. Pierson, Sarah Hubka, Steve Rucker, Ingelise J. Gordon, Mary E. Enama, Charla A. Andrews, Qing Xu, Brent S. Davis, Martha Nason, Michael Fay, Richard A. Koup, Mario Roederer, Robert T. Bailer, Phillip L. Gomez, John R. Mascola, Gwong-Jen J. Chang, Gary J. Nabel & Barney S. Graham (2007). "A West Nile virus DNA vaccine induces neutralizing antibody in healthy adults during a phase 1 clinical trial". The Journal of infectious diseases. 196 (12): 1732–1740. doi:10.1086/523650. PMID 18190252. Unknown parameter |month= ignored (help)
  6. Susan I. Jarvi, Darcy Hu, Kathleen Misajon, Beth-Ann Coller, Teri Wong & Michael M. Lieberman (2013). "Vaccination of captive nene (Branta sandvicensis) against West Nile virus using a protein-based vaccine (WN-80E)". Journal of wildlife diseases. 49 (1): 152–156. doi:10.7589/2011-12-363. PMID 23307381. Unknown parameter |month= ignored (help)
  7. Michael M. Lieberman, Vivek R. Nerurkar, Haiyan Luo, Bruce Cropp, Ricardo Jr Carrion, Melissa de la Garza, Beth-Ann Coller, David Clements, Steven Ogata, Teri Wong, Tim Martyak & Carolyn Weeks-Levy (2009). "Immunogenicity and protective efficacy of a recombinant subunit West Nile virus vaccine in rhesus monkeys". Clinical and vaccine immunology : CVI. 16 (9): 1332–1337. doi:10.1128/CVI.00119-09. PMID 19641099. Unknown parameter |month= ignored (help)
  8. I. Jordan, T. Briese, N. Fischer, J. Y. Lau & W. I. Lipkin (2000). "Ribavirin inhibits West Nile virus replication and cytopathic effect in neural cells". The Journal of infectious diseases. 182 (4): 1214–1217. doi:10.1086/315847. PMID 10979920. Unknown parameter |month= ignored (help)
  9. S. Ia Loginova, S. V. Borisevich, Iu A. Pashchenko & V. P. Bondarev (2009). "[Ribavirin prophylaxis and therapy of experimental West Nile fever]". [[Antibiotiki i khimioterapiia = Antibiotics and chemoterapy [sic] / Ministerstvo meditsinskoi i mikrobiologicheskoi promyshlennosti SSSR]]. 54 (11–12): 17–20. PMID 20583562.
  10. Anderson, John F. (2002). "Efficacy of Interferon -2b and Ribavirin Against West Nile Virus In Vitro". Emerging Infectious Diseases. 8 (1): 107–108. doi:10.3201/eid0801.010252. ISSN 1080-6040.


Template:WS