Neuronal calcium sensor-1 (NCS-1) also known as frequenin homolog (Drosophila) (freq) is a protein that is encoded by the FREQgene in humans.[1] NCS-1 is a member of the neuronal calcium sensor family,[2] a class of EF hand containing calcium-myristoyl-switch proteins.[3]
NCS-1 regulates synaptic transmission,[4] helps control the dynamics of nerve terminal growth,[5][6][4] is critical for some forms of learning and memory in C. elegans[7] and mammals,[8] regulates corticohippocampal plasticity; and enhancing levels of NCS-1 in the mouse dentate gyrus increases spontaneous exploration of safe environments,[8] potentially linking NCS-1 to curiosity.[9]
NCS-1 is a calcium sensor, not a calcium buffer (chelator); thus it is a high-affinity, low-capacity, calcium-binding protein.
Frq can substitute for calmodulin in some situations. It is thought to be associated with neuronal secretory vesicles and regulate neurosecretion.
It is the Ca2+-sensing subunit of the yeast phosphatidylinositol (PtdIns)-4-OH kinase, PIK1
It binds to many proteins, some in calcium dependent and some in calcium independent ways, and switches many of the targets "on" (some off).
Frq modulates Ca2+ entry through a functional interaction with the α1 voltage-gated Ca2+-channel subunit.[4]
Structure
NCS-1 is a globular protein consisting of ten alpha-helices. Four pairs of alpha-helices each form independent 12-amino-acid loops containing a negatively charged calcium binding domain known as an EF-hand. However, only three of these EF hands are functional in NCS-1 (the most N-terminal EF hand does not bind calcium). NCS-1 also contains at least two known protein binding domains, and a large surface exposed hydrophobic crevice containing EF-hands three and four. There is a myristoylation motif at the N-terminus that presumably allows NCS-1 to associate with lipid membranes.
NCS-1 was originally discovered in Drosophila as a gain-of-function mutation associated with frequency-dependent increases in neurotransmission.[16] A role in neurotransmission was later confirmed in Drosophila using frq null mutants.[4] Work in bovine chromaffin cells demonstrated that NCS-1 is also a modulator of neurotransmission in mammals.[17] The designation 'NCS-1' came from the assumption that the protein was expressed only in neuronal cell types, which is not the case.[18]
References
↑Bourne Y, Dannenberg J, Pollmann V, Marchot P, Pongs O (April 2001). "Immunocytochemical localization and crystal structure of human frequenin (neuronal calcium sensor 1)". J. Biol. Chem. 276 (15): 11949–55. doi:10.1074/jbc.M009373200. PMID11092894.
↑ 4.04.14.24.3Dason JS, Romero-Pozuelo J, Marin L, Iyengar BG, Klose MK, Ferrus A, Atwood HL (2009). "Frequenin/NCS-1 and the Ca2+-channel {alpha}1-subunit co-regulate synaptic transmission and nerve-terminal growth". Journal of Cell Science. 122 (22): 4109–4121. doi:10.1242/jcs.055095. PMID19861494.
↑Romero-Pozuelo J, Dason JS, Atwood HL, Ferrus A (2007). "Chronic and acute alterations in the functional levels of Frequenins 1 and 2 reveal their roles in synaptic transmission and axon terminal morphology". European Journal of Neuroscience. 26 (9): 2428–2443. doi:10.1111/j.1460-9568.2007.05877.x. PMID17970740.
↑Hui K, Fei GH, Saab BJ, Su J, Roder JC, Feng ZP (2007). "Neuronal calcium sensor-1 modulation of optimal calcium level for neurite outgrowth". Development. 134 (24): 4479–4489. doi:10.1242/dev.008979. PMID18039973.
↑Gomez M, De Castro E, Guarin E, Sasakura H, Kuhara A, Mori I, Bartfai T, Bargmann CI, Nef P (2001). "Ca2+ signaling via the neuronal calcium sensor-1 regulates associative learning and memory in C. elegans". Neuron. 30 (1): 241–8. doi:10.1016/S0896-6273(01)00276-8. PMID11343658.
↑ 8.08.1Saab BJ, Georgiou J, Nath A, Lee FJ, Wang M, Michalon A, Liu F, Mansuy IM, Roder JC (2009). "NCS-1 in the dentate gyrus promotes exploration, synaptic plasticity, and rapid acquisition of spatial memory". Neuron. 63 (5): 643–56. doi:10.1016/j.neuron.2009.08.014. PMID19755107.
↑Romero-Pozuelo J, Dason JS, Mansilla A, Baños-Mateos S, Sardina JL, Chaves-Sanjuán A, Jurado-Gómez J, Santana E, Atwood HL, Hernández-Hernández A, Sánchez-Barrena MJ, Ferrús A (2014). "The guanine-exchange factor Ric8a binds to the Ca2+ sensor NCS-1 to regulate synapse number and neurotransmitter release". Journal of Cell Science. 127 (19): 4246–4259. doi:10.1242/jcs.152603. PMID25074811.
↑Pongs O, Lindemeier J, Zhu XR, Theil T, Engelkamp D, Krah-Jentgens I, Lambrecht HG, Koch KW, Schwemer J, Rivosecchi R, Mallart A, Galceran J, Canal I, Barbas A, Ferrus A (1993). "Frequenin--a novel calcium-binding protein that modulates synaptic efficacy in the Drosophila nervous system". Neuron. 11 (1): 15–28. doi:10.1016/0896-6273(93)90267-U. PMID8101711.
↑McFerran BW, Weiss JL, Burgoyne RD (October 1999). "Neuronal Ca(2+) sensor 1. Characterization of the myristoylated protein, its cellular effects in permeabilized adrenal chromaffin cells, Ca(2+)-independent membrane association, and interaction with binding proteins, suggesting a role in rapid Ca(2+) signal transduction". Journal of Biological Chemistry. 274 (42): 30258–65. doi:10.1074/jbc.274.42.30258. PMID10514519.
↑Nef S, Fiumelli H, de Castro E, Raes MB, Nef P (1995). "Identification of neuronal calcium sensor (NCS-1) possibly involved in the regulation of receptor phosphorylation". J. Recept. Signal Transduct. Res. 15 (1–4): 365–78. doi:10.3109/10799899509045227. PMID8903951.
Further reading
Dason JS, Romero-Pozuelo J, Atwood HL, Ferrús A (April 2012). "Multiple roles for frequenin/NCS-1 in synaptic function and development". Mol. Neurobiol. 45 (2): 388–402. doi:10.1007/s12035-012-8250-4. PMID22396213.