Lead poisoning pathophysiology

Jump to navigation Jump to search

Lead poisoning Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Lead poisoning from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X-ray

Echocardiography and Ultrasound

CT scan

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Lead poisoning pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Lead poisoning pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Lead poisoning pathophysiology

CDC on Lead poisoning pathophysiology

Lead poisoning pathophysiology in the news

Blogs on Lead poisoning pathophysiology

Directions to Hospitals Treating Psoriasis

Risk calculators and risk factors for Lead poisoning pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Aksiniya K. Stevasarova, MD

Overview

Lead poisoning is a medical condition, also known as saturnism, plumbism, or painter's colic caused by increased blood lead levels. Lead may cause irreversible neurological damage as well as renal disease, cardiovascular effects, and reproductive toxicity.

Humans have been mining and using this heavy metal for thousands of years, poisoning themselves in the process due to accumulation and exposure. These dangers have long been known, though the modern understanding of their full extent and the small amount of lead necessary to produce them is relatively recent; blood lead levels once considered safe are now considered hazardous, with no known threshold. Reducing these hazards requires both individual actions and public policy regulations. [1]

Pathophysiology

Pathogenesis

  • Lead has no known physiologically relevant role in the body.
  • The toxicity of lead comes from its ability to mimic other biologically important metals, most notably calcium, iron and zinc which act as cofactors in many enzymatic reactions.
  • Following ingestion, lead is able to bind to and interact with many of the same enzymes as these are metals, but due to its differing chemistry, does not properly function as a co-factor, thus interfering with the enzyme's ability to catalyze its normal reaction(s).
  • Lead toxicity symptoms arise are thought to occur by interfering with an essential enzyme delta-AminoLevulinic Acid Dehydratase, or ALAD. ALAD is a zinc-binding protein which is important in the biosynthesis of heme, the co-factor found in hemoglobin. Lead poisoning also inhibits the enzyme ferrochelatase which catalyzes the joining of protoporphyrin IX and Fe2+ to form Heme.

References

  1. [www.atsdr.cdc.com]

Template:WH Template:WS