Kidney stone pathophysiology

Jump to navigation Jump to search
https://https://www.youtube.com/watch?v=uloDkeBOxGQ%7C350}}

Kidney stone Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Kidney stone from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X Ray

Ultrasonography

CT

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Kidney stone pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Kidney stone pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

National Guidelines Clearinghouse

NICE Guidance

FDA on Kidney stone pathophysiology

CDC on Kidney stone pathophysiology

Kidney stone pathophysiology in the news

Blogs onKidney stone pathophysiology

Directions to Hospitals Treating Kidney stone

Risk calculators and risk factors for Kidney stone pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief:

Overview

Pathophysiology

Pathogenesis

  • It is understood that nephrolithiasis is the result of / is mediated by / is produced by / is caused by either [hypothesis 1], [hypothesis 2], or [hypothesis 3].
  • [Pathogen name] is usually transmitted via the [transmission route] route to the human host.
  • Following transmission/ingestion, the [pathogen] uses the [entry site] to invade the [cell name] cell.
  • [Disease or malignancy name] arises from [cell name]s, which are [cell type] cells that are normally involved in [function of cells].
  • The progression to [disease name] usually involves the [molecular pathway].
  • The pathophysiology of [disease/malignancy] depends on the histological subtype.

Genetics

Associated Conditions

Gross Pathology

  • On gross pathology,the characteristic findings of nephrolithiasis are:
    • Location = 80% unilateral, usually in calyces, pelvis or bladder
    • Size=variable, 2-3 mm usually
    • All stones contain an organic matrix of mucoprotein
    • Shape=
      • Struvite stone= staghorn calculus

Microscopic Pathology

  • On microscopic histopathological analysis, the characteristic findings of nephrolithiasis are:
    • Shapes of different stones/crystals are different
      • Cysteine=hexagonal
      • Struvite= coffin lid shape
      • Calcium oxalate=pyramid shape
      • Calcium oxalate= dumbbell shaped
      • Uric acid= rectangular/rhomboidal
    • Oxalate crystals are highlighted by polarized light
    • Foreign body giant cells and macrophages are seen with the stones

References

  1. By Amadalvarez - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=46706235
  2. By H. Zell [GFDL (http://www.gnu.org/copyleft/fdl.html) or CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0)], from Wikimedia Commons
  3. By Jakupica - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=45324355
  4. By RJHall - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=4070842
  5. Han H, Segal AM, Seifter JL, Dwyer JT (July 2015). "Nutritional Management of Kidney Stones (Nephrolithiasis)". Clin Nutr Res. 4 (3): 137–52. doi:10.7762/cnr.2015.4.3.137. PMC 4525130. PMID 26251832.
  6. http://kidneypathology.com/Imagenes/Diabetes/Oxalato.4.w.jpg
  7. http://www.kidneypathology.com/English_version/Diabetes_and_others.html
  8. By Kempf EK - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=18036112
  9. By Sergio Bertazzo - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=45316797

Template:WH Template:WS