Distal radius fracture pathophysiology

Revision as of 21:25, 29 July 2020 by WikiBot (talk | contribs) (Bot: Removing from Primary care)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Distal radius fracture Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Distal radius fracture from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

X Ray

CT

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Non-Operative Treatment

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Distal radius fracture pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Distal radius fracture pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Distal radius fracture pathophysiology

CDC on Distal radius fracture pathophysiology

Distal radius fracture pathophysiology in the news

Blogs on Distal radius fracture pathophysiology

Directions to Hospitals Treating Distal radius fracture

Risk calculators and risk factors for Distal radius fracture pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Rohan A. Bhimani, M.B.B.S., D.N.B., M.Ch.[2]

Overview

The pattern of fracture and degree of comminution are the resultant of several factors or variables such as the nature of the fall, the bone quality, the age and weight of the patient, the energy involved, and the position of the hand and wrist at the time of impact. Various combinations of these variables lead to a variety of different fracture patterns.

Pathophysiology

  • The fracture pattern and severity of comminution depends on multiple factors including:
    • Nature of the fall
    • Bone quality
    • Age of the patient
    • Weight of the patient
    • Energy involved
    • Position of the hand and wrist at the time of impact
  • Decrease in bone mass density involves following process:[1]

Mechanism of Fracture

Anatomy of Articular Interface of Distal Radius

Associated Conditions

Conditions associated with poor bone quality leading to distal radius fracture include:[4]

Gross Pathology

On gross pathology, decreased bone density and small pores in diaphysis of bones are characteristic findings of osteoporosis, leading to distal radius fracture.[4]

Gross pathology of osteoporotic bone in contrast with normal bone, showing the decrease in trabecular meshwork. Source: By Turner Biomechanics Laboratory, via Wikimedia.org

Microscopic Pathology

References

  1. 1.0 1.1 Onal M, Piemontese M, Xiong J, Wang Y, Han L, Ye S; et al. (2013). "Suppression of autophagy in osteocytes mimics skeletal aging". J Biol Chem. 288 (24): 17432–40. doi:10.1074/jbc.M112.444190. PMC 3682543. PMID 23645674.
  2. Brown, Charles (2015). Rockwood and Green's fractures in adults. Philadelphia: Lippincott Williams & Wilkins/Wolters Kluwer Health. ISBN 9781451175318. Check |isbn= value: invalid character (help).
  3. 3.0 3.1 Elstrom, John (2006). Handbook of fractures. New York: McGraw-Hill, Medical Pub. Division. ISBN 9780071443777.
  4. 4.0 4.1 4.2 4.3 Azar, Frederick (2017). Campbell's operative orthopaedics. Philadelphia, PA: Elsevier. ISBN 9780323433808.
  5. Fernandez, Diego (2002). Fractures of the Distal Radius : a Practical Approach to Management. New York, NY: Springer New York. ISBN 9781461300335.
  6. Havemann D, Busse FW (1990). "[Accident mechanisms and classification in distal radius fracture]". Langenbecks Arch Chir Suppl II Verh Dtsch Ges Chir: 639–42. PMID 1983626.
  7. Meena S, Sharma P, Sambharia AK, Dawar A (2014). "Fractures of distal radius: an overview". J Family Med Prim Care. 3 (4): 325–32. doi:10.4103/2249-4863.148101. PMC 4311337. PMID 25657938.
  8. Gong XY, Rong GW, An GS, Wang Y, Zhang GZ (2003). "[Selection of dorsal or volar internal fixation for unstable distal radius fractures]". Zhonghua Wai Ke Za Zhi. 41 (6): 436–40. PMID 12895353.
  9. Couzens GB, Peters SE, Cutbush K, Hope B, Taylor F, James CD; et al. (2014). "Stainless steel versus titanium volar multi-axial locking plates for fixation of distal radius fractures: a randomised clinical trial". BMC Musculoskelet Disord. 15: 74. doi:10.1186/1471-2474-15-74. PMC 3984716. PMID 24612524.

Template:WH Template:WS