Aortic stenosis MRI
Aortic Stenosis Microchapters |
Diagnosis |
---|
Treatment |
Percutaneous Aortic Balloon Valvotomy (PABV) or Aortic Valvuloplasty |
Transcatheter Aortic Valve Replacement (TAVR) |
Case Studies |
Aortic stenosis MRI On the Web |
American Roentgen Ray Society Images of Aortic stenosis MRI |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editors-In-Chief: Claudia P. Hochberg, M.D. [2], Abdul-Rahman Arabi, M.D. [3], Keri Shafer, M.D. [4], Priyamvada Singh, MBBS [5], Mohammed A. Sbeih, M.D. [6]; Assistant Editor-In-Chief: Kristin Feeney, B.S. [7]
Overview
Magnetic resonance imaging can be helpful as a diagnostic tool in conditions where the echocardiographic findings are inconclusive.
Magnetic Resonance Imaging
Magnetic resonance imaging (MRI) can be used as a diagnostic modality in aortic stenosis.
Advantages of using MRI include:
- It can be used in cases where echocardiographic results are inconclusive.
- Helps in measuring heart volumes, blood flow and ventricular wall thickness.
- The magnetic resonance angiography helps in better visualization of heart vasculature.
- Phase velocity mapping helps in measuring the ratio of pulmonary to systemic blood flow (Qp:Qs).
Disadvantages include
The disadvantages of MRI are that the scan times are longer than most other imaging modalities. The MRI environment itself is often uncomfortable for the patient (loud noises, confined area, patients are required to remain motionless for long periods of time). The MRI environment can potentially be dangerous, if specific safety measures are not strigently followed. Patients should be screened for any surgically implanted device that may not be MRI compatiable before entering the MRI department. The MRI environment must be kept free of any ferro magnetic material, which may otherwise be drawn into the magnet with sufficent force to injure, or kill patients, family and or staff in the area. Small metallic objects such as paper clips or hairpins which may not have significant mass to cause serious injury to a person, may be drawn into the magnet, and distort the magnetic field until removed. The removal of these items is very costly, and may result in downtime of several days for the imaging system. In the event that a serious (potentally life threatening ) accident occurs in the MRI scan room, an emergency Quench of the magnets' cryogens is performed. In such an instance (very rare) the scan room may be suddenly filled with helium gas, there is the potential for suffocation, cryogen burns, ruptured eardrums. An emergency quench of the magnet is very expensive (the magnet may be ruined) and is considered to be a option of last resort. In the event of medical emergencies in the MRI environment, the general rule of thumb, is to remove the patient from the scan room prior to the arrival of emergency support personnel. Safety of patients, family members, and staff are always the first priority in any MRI facility.
For successful MRI procedure breath holding is required, which is sometimes difficult to achieve with small kids. Due to this, the procedure is done under general anesthesia in children.
Cardiovascular MRI (CMR) is a useful tool in diagnosis and evaluation of bicuspid aortic valve. Stead-state free precession sequences are used to obtain a slice in the place of the valve, and show the anatomy of the valve well. Differentiation may be made between an anatomically bicuspid valve, and anatomically trileaflet valve with fused comissures ("functionally-bicuspid valve"). In addition, CMR is invaluable in defining anatomic valve area, in quantification of aortic regurgitation, and in diagnosis of concomitant cardiovascular abnormalities, such as thoracic aortic dilatation/aneurysm and mitral valve abnormalities.