Hypertrophic cardiomyopathy septal myectomy
Hypertrophic Cardiomyopathy Microchapters |
Differentiating Hypertrophic Cardiomyopathy from other Diseases |
---|
Diagnosis |
Treatment |
Case Studies |
Hypertrophic cardiomyopathy septal myectomy On the Web |
Directions to Hospitals Treating Hypertrophic cardiomyopathy |
Risk calculators and risk factors for Hypertrophic cardiomyopathy septal myectomy |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-In-Chief: Cafer Zorkun, M.D. [2]; Caitlin J. Harrigan [3]; Martin S. Maron, M.D.; Barry J. Maron, M.D.; Lakshmi Gopalakrishnan, M.B.B.S. [4]
Overview
Septal myectomy is a surgical treatment for hypertrophic cardiomyopathy (HCM). Septal myectomies have been successfully performed for more than 25 years.
History
It has been performed successfully for more than 25 years.
Indications
Surgical septal myectomy is the gold standard for relief of symptoms for patients who do not experience relief of symptoms from medications[1] [2] [3] [4] [5] [6].
Technique
- It involves a midline thoracotomy (general anesthesia, opening the chest, and cardiopulmonary bypass) and removing a portion of the interventricular septum[1].
- A modification of the Morrow myectomy termed extended myectomy, mobilization and partial excision of the papillary muscles has become the excision of choice [2][7][8][9].
- In selected patients with particularly large redundant mitral valves, anterior leaflet plication may be added to complete separation of the mitral valve and outflow[9][10].
Efficacy and Procedural Success
Surgical septal myectomy uniformly decreases left ventricular outflow tract obstruction and improves symptoms, and in experienced centers has a surgical mortality of 1%.
Surgical myectomy resection focused just on the subaortic septum, to increase the size of the outflow tract to reduce Venturi forces may be inadequate to abolish systolic anterior motion (SAM) of the anterior leaflet of the mitral valve. With this limited sort of resection the residual mid-septal bulge still redirects flow posteriorly: SAM persists because flow still gets behind the mitral valve. It is only when the deeper portion of the septal bulge is resected that flow is redirected anteriorly away from the mitral valve, abolishing SAM [2] [11].
Outcomes
Septal myectomy is associated with a low perioperative mortality and a high late survival rate. A study at the Mayo Clinic found surgical myectomy performed to relieve outflow obstruction and severe symptoms in HCM was associated with long-term survival equivalent to that of the general population, and superior to obstructive HCM without operation. The results are shown below:[12]
|
|
|
* Includes 0.8% operative mortality.
Comparison with alcohol ablation
Either alcohol septal ablation or myectomy offers substantial clinical improvement for patients with hypertrophic obstructive cardiomyopathy.
Hemodynamic resolution of the obstruction and its sequelae is more complete with myectomy.[13]
2011 ACCF/AHA Guideline Recommendations: Septal Myectomy [14][15]
“ |
Class IIa1. Consultation with centers experienced in performing both surgical septal myectomy and alcohol septal ablation is reasonable when discussing treatment options for eligible patients with HCM with severe drug-refractory symptoms and LVOT obstruction. (Level of Evidence: C) 2. Surgical septal myectomy, when performed in experienced centers, can be beneficial and is the first consideration for the majority of eligible patients with HCM with severe drug-refractory symptoms and LVOT obstruction.(61,62,155,273–275) (Level of Evidence: B) 3. Surgical septal myectomy, when performed at experienced centers, can be beneficial in symptomatic children with HCM and severe resting obstruction (>50 mm Hg) for whom standard medical therapy has failed.(276) (Level of Evidence: C) |
” |
Guideline Resources
- The Task Force for Cardiac Pacing and Cardiac Resynchronization Therapy of the European Society of Cardiology. Developed in Collaboration with the European Heart Rhythm Association [17]
Related Chapters
References
- ↑ 1.0 1.1 Maron BJ (2002). "Hypertrophic cardiomyopathy: a systematic review". JAMA. 287 (10): 1308–20. PMID 11886323.
- ↑ 2.0 2.1 2.2 Sherrid MV, Chaudhry FA, Swistel DG (2003). "Obstructive hypertrophic cardiomyopathy: echocardiography, pathophysiology, and the continuing evolution of surgery for obstruction". Ann Thorac Surg. 75 (2): 620–32. PMID 12607696.
- ↑ Wigle ED, Rakowski H, Kimball BP, Williams WG (1995). "Hypertrophic cardiomyopathy. Clinical spectrum and treatment". Circulation. 92 (7): 1680–92. PMID 7671349.
- ↑ Maron BJ, McKenna WJ, Danielson GK, Kappenberger LJ, Kuhn HJ, Seidman CE; et al. (2003). "American College of Cardiology/European Society of Cardiology clinical expert consensus document on hypertrophic cardiomyopathy. A report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus Documents and the European Society of Cardiology Committee for Practice Guidelines". J Am Coll Cardiol. 42 (9): 1687–713. PMID 14607462.
- ↑ Sherrid MV, Barac I, McKenna WJ, Elliott PM, Dickie S, Chojnowska L; et al. (2005). "Multicenter study of the efficacy and safety of disopyramide in obstructive hypertrophic cardiomyopathy". J Am Coll Cardiol. 45 (8): 1251–8. doi:10.1016/j.jacc.2005.01.012. PMID 15837258.
- ↑ Morrow AG (1978). "Hypertrophic subaortic stenosis. Operative methods utilized to relieve left ventricular outflow obstruction". J Thorac Cardiovasc Surg. 76 (4): 423–30. PMID 581298.
- ↑ Messmer BJ (1994). "Extended myectomy for hypertrophic obstructive cardiomyopathy". Ann Thorac Surg. 58 (2): 575–7. PMID 8067875.
- ↑ Schoendube FA, Klues HG, Reith S, Flachskampf FA, Hanrath P, Messmer BJ (1995). "Long-term clinical and echocardiographic follow-up after surgical correction of hypertrophic obstructive cardiomyopathy with extended myectomy and reconstruction of the subvalvular mitral apparatus". Circulation. 92 (9 Suppl): II122–7. PMID 7586394.
- ↑ 9.0 9.1 Balaram SK, Sherrid MV, DeRose JJ, Hillel Z, Winson G, Swistel DG. Beyond extended myectomy for hypertrophic cardiomyopathy: The RPR (Resection–Plication–Release) Repair. Annals of Thoracic Surgery 2005; 80:217–23
- ↑ McIntosh CL, Maron BJ, Cannon RO, Klues H. Initial results of combined anterior mitral valve plication and ventricular septal myotomy–myectomy for relief of left ventricular outflow obstruction in patients with hypertrophic cardiomyopathy. Circulation 1992; 86:II 60–7
- ↑ Nakatani S, Schwammenthal E, Lever HM, Levine RA, Lytle BW, Thomas JD (1996). "New insights into the reduction of mitral valve systolic anterior motion after ventricular septal myectomy in hypertrophic obstructive cardiomyopathy". Am Heart J. 131 (2): 294–300. PMID 8579024.
- ↑ Ommen S, Maron B, Olivotto I, Maron M, Cecchi F, Betocchi S, Gersh B, Ackerman M, McCully R, Dearani J, Schaff H, Danielson G, Tajik A, Nishimura R (2005). "Long-term effects of surgical septal myectomy on survival in patients with obstructive hypertrophic cardiomyopathy". J Am Coll Cardiol. 46 (3): 470–6. PMID 16053960.
- ↑ Ralph-Edwards A, Woo A, McCrindle B, Shapero J, Schwartz L, Rakowski H, Wigle E, Williams W (2005). "Hypertrophic obstructive cardiomyopathy: comparison of outcomes after myectomy or alcohol ablation adjusted by propensity score". J Thorac Cardiovasc Surg. 129 (2): 351–8. PMID 15678046.
- ↑ 14.0 14.1 Gersh BJ, Maron BJ, Bonow RO, Dearani JA, Fifer MA, Link MS, Naidu SS, Nishimura RA, Ommen SR, Rakowski H, Seidman CE, Towbin JA, Udelson JE, Yancy CW (2011). "2011 ACCF/AHA Guideline for the Diagnosis and Treatment of Hypertrophic Cardiomyopathy: Executive Summary A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines Developed in Collaboration With the American Association for Thoracic Surgery, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons". Journal of the American College of Cardiology. 58 (25): 2703–38. doi:10.1016/j.jacc.2011.10.825. PMID 22075468. Retrieved 2011-12-19. Unknown parameter
|month=
ignored (help) - ↑ 15.0 15.1 Gersh BJ, Maron BJ, Bonow RO, Dearani JA, Fifer MA, Link MS, Naidu SS, Nishimura RA, Ommen SR, Rakowski H, Seidman CE, Towbin JA, Udelson JE, Yancy CW (2011). "2011 ACCF/AHA Guideline for the Diagnosis and Treatment of Hypertrophic Cardiomyopathy A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines Developed in Collaboration With the American Association for Thoracic Surgery, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons". Journal of the American College of Cardiology. 58 (25): e212–60. doi:10.1016/j.jacc.2011.06.011. PMID 22075469. Retrieved 2011-12-19. Unknown parameter
|month=
ignored (help) - ↑ Epstein AE, DiMarco JP, Ellenbogen KA, Estes NAM III, Freedman RA, Gettes LS, Gillinov AM, Gregoratos G, Hammill SC, Hayes DL, Hlatky MA, Newby LK, Page RL, Schoenfeld MH, Silka MJ, Stevenson LW, Sweeney MO. ACC/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the ACC/AHA/NASPE 2002 Guideline Update for Implantation of Cardiac Pacemakers and Antiarrhythmia Devices). Circulation. 2008; 117: 2820–2840. PMID 18483207
- ↑ Vardas PE, Auricchio A, Blanc JJ, Daubert JC, Drexler H, Ector H; et al. (2007). "Guidelines for cardiac pacing and cardiac resynchronization therapy. The Task Force for Cardiac Pacing and Cardiac Resynchronization Therapy of the European Society of Cardiology. Developed in collaboration with the European Heart Rhythm Association". Europace. 9 (10): 959–98. doi:10.1093/europace/eum189. PMID 17726043.