PRKAA2

Revision as of 13:34, 6 September 2012 by WikiBot (talk | contribs) (Robot: Automated text replacement (-{{reflist}} +{{reflist|2}}, -<references /> +{{reflist|2}}, -{{WikiDoc Cardiology Network Infobox}} +))
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search


Protein kinase, AMP-activated, alpha 2 catalytic subunit
File:PBB Protein PRKAA2 image.jpg
PDB rendering based on 2h6d.
Available structures
PDB Ortholog search: Template:Homologene2PDBe PDBe, Template:Homologene2uniprot RCSB
Identifiers
Symbols PRKAA2 ; AMPK; AMPK2; PRKAA
External IDs Template:OMIM5 Template:MGI HomoloGene4551
RNA expression pattern
File:PBB GE PRKAA2 207709 at tn.png
More reference expression data
Orthologs
Template:GNF Ortholog box
Species Human Mouse
Entrez n/a n/a
Ensembl n/a n/a
UniProt n/a n/a
RefSeq (mRNA) n/a n/a
RefSeq (protein) n/a n/a
Location (UCSC) n/a n/a
PubMed search n/a n/a

Protein kinase, AMP-activated, alpha 2 catalytic subunit, also known as PRKAA2, is a human gene.[1]

The protein encoded by this gene is a catalytic subunit of the AMP-activated protein kinase (AMPK). AMPK is a heterotrimer consisting of an alpha catalytic subunit, and non-catalytic beta and gamma subunits. AMPK is an important energy-sensing enzyme that monitors cellular energy status. In response to cellular metabolic stresses, AMPK is activated, and thus phosphorylates and inactivates acetyl-CoA carboxylase (ACC) and beta-hydroxy beta-methylglutaryl-CoA reductase (HMGCR), key enzymes involved in regulating de novo biosynthesis of fatty acid and cholesterol. Studies of the mouse counterpart suggest that this catalytic subunit may control whole-body insulin sensitivity and is necessary for maintaining myocardial energy homeostasis during ischemia.[1]

References

  1. 1.0 1.1 "Entrez Gene: PRKAA2 protein kinase, AMP-activated, alpha 2 catalytic subunit".

Further reading

  • Hardie DG, MacKintosh RW (1995). "AMP-activated protein kinase--an archetypal protein kinase cascade?". Bioessays. 14 (10): 699–704. doi:10.1002/bies.950141011. PMID 1365882.
  • Hardie DG (1992). "Regulation of fatty acid and cholesterol metabolism by the AMP-activated protein kinase". Biochim. Biophys. Acta. 1123 (3): 231–8. PMID 1536860.
  • Carling D (2004). "The AMP-activated protein kinase cascade--a unifying system for energy control". Trends Biochem. Sci. 29 (1): 18–24. PMID 14729328.
  • Aguan K, Scott J, See CG, Sarkar NH (1994). "Characterization and chromosomal localization of the human homologue of a rat AMP-activated protein kinase-encoding gene: a major regulator of lipid metabolism in mammals". Gene. 149 (2): 345–50. PMID 7959015.
  • Beri RK, Marley AE, See CG; et al. (1995). "Molecular cloning, expression and chromosomal localisation of human AMP-activated protein kinase". FEBS Lett. 356 (1): 117–21. PMID 7988703.
  • Bonaldo MF, Lennon G, Soares MB (1997). "Normalization and subtraction: two approaches to facilitate gene discovery". Genome Res. 6 (9): 791–806. PMID 8889548.
  • Vavvas D, Apazidis A, Saha AK; et al. (1997). "Contraction-induced changes in acetyl-CoA carboxylase and 5'-AMP-activated kinase in skeletal muscle". J. Biol. Chem. 272 (20): 13255–61. PMID 9148944.
  • Stapleton D, Woollatt E, Mitchelhill KI; et al. (1997). "AMP-activated protein kinase isoenzyme family: subunit structure and chromosomal location". FEBS Lett. 409 (3): 452–6. PMID 9224708.
  • Stein SC, Woods A, Jones NA; et al. (2000). "The regulation of AMP-activated protein kinase by phosphorylation". Biochem. J. 345 Pt 3: 437–43. PMID 10642499.
  • da Silva Xavier G, Leclerc I, Salt IP; et al. (2000). "Role of AMP-activated protein kinase in the regulation by glucose of islet beta cell gene expression". Proc. Natl. Acad. Sci. U.S.A. 97 (8): 4023–8. PMID 10760274.
  • Mu J, Brozinick JT, Valladares O; et al. (2001). "A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle". Mol. Cell. 7 (5): 1085–94. PMID 11389854.
  • Minokoshi Y, Kim YB, Peroni OD; et al. (2002). "Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase". Nature. 415 (6869): 339–43. doi:10.1038/415339a. PMID 11797013.
  • Dubbelhuis PF, Meijer AJ (2002). "Hepatic amino acid-dependent signaling is under the control of AMP-dependent protein kinase". FEBS Lett. 521 (1–3): 39–42. PMID 12067722.
  • Esumi H, Izuishi K, Kato K; et al. (2002). "Hypoxia and nitric oxide treatment confer tolerance to glucose starvation in a 5'-AMP-activated protein kinase-dependent manner". J. Biol. Chem. 277 (36): 32791–8. doi:10.1074/jbc.M112270200. PMID 12091379.
  • Nielsen JN, Mustard KJ, Graham DA; et al. (2003). "5'-AMP-activated protein kinase activity and subunit expression in exercise-trained human skeletal muscle". J. Appl. Physiol. 94 (2): 631–41. doi:10.1152/japplphysiol.00642.2002. PMID 12391032.
  • Wojtaszewski JF, Mourtzakis M, Hillig T; et al. (2002). "Dissociation of AMPK activity and ACCbeta phosphorylation in human muscle during prolonged exercise". Biochem. Biophys. Res. Commun. 298 (3): 309–16. PMID 12413941.
  • Hallows KR, McCane JE, Kemp BE; et al. (2003). "Regulation of channel gating by AMP-activated protein kinase modulates cystic fibrosis transmembrane conductance regulator activity in lung submucosal cells". J. Biol. Chem. 278 (2): 998–1004. doi:10.1074/jbc.M210621200. PMID 12427743.
  • Zong H, Ren JM, Young LH; et al. (2003). "AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation". Proc. Natl. Acad. Sci. U.S.A. 99 (25): 15983–7. doi:10.1073/pnas.252625599. PMID 12444247.

Template:WikiDoc Sources