5'-AMP-activated protein kinase catalytic subunit alpha-2 is an enzyme that in humans is encoded by the PRKAA2gene.[1][2]
Function
The protein encoded by this gene is a catalytic subunit of the AMP-activated protein kinase (AMPK). AMPK is a heterotrimer consisting of an alpha catalytic subunit, and non-catalytic beta and gamma subunits. AMPK is an important energy-sensing enzyme that monitors cellular energy status. In response to cellular metabolic stresses, AMPK is activated, and thus phosphorylates and inactivates acetyl-CoA carboxylase (ACC) and beta-hydroxy beta-methylglutaryl-CoA reductase (HMGCR), key enzymes involved in regulating de novo biosynthesis of fatty acid and cholesterol. Studies of the mouse counterpart suggest that this catalytic subunit may control whole-body insulin sensitivity and is necessary for maintaining myocardial energy homeostasis during ischemia.[2]
References
↑Aguan K, Scott J, See CG, Sarkar NH (Dec 1994). "Characterization and chromosomal localization of the human homologue of a rat AMP-activated protein kinase-encoding gene: a major regulator of lipid metabolism in mammals". Gene. 149 (2): 345–50. doi:10.1016/0378-1119(94)90174-0. PMID7959015.
Hardie DG, MacKintosh RW (1995). "AMP-activated protein kinase--an archetypal protein kinase cascade?". BioEssays. 14 (10): 699–704. doi:10.1002/bies.950141011. PMID1365882.
Hardie DG (1992). "Regulation of fatty acid and cholesterol metabolism by the AMP-activated protein kinase". Biochim. Biophys. Acta. 1123 (3): 231–8. doi:10.1016/0005-2760(92)90001-c. PMID1536860.
Carling D (2004). "The AMP-activated protein kinase cascade--a unifying system for energy control". Trends Biochem. Sci. 29 (1): 18–24. doi:10.1016/j.tibs.2003.11.005. PMID14729328.
Beri RK, Marley AE, See CG, Sopwith WF, Aguan K, Carling D, Scott J, Carey F (1995). "Molecular cloning, expression and chromosomal localisation of human AMP-activated protein kinase". FEBS Lett. 356 (1): 117–21. doi:10.1016/0014-5793(94)01247-4. PMID7988703.
Bonaldo MF, Lennon G, Soares MB (1997). "Normalization and subtraction: two approaches to facilitate gene discovery". Genome Res. 6 (9): 791–806. doi:10.1101/gr.6.9.791. PMID8889548.
Vavvas D, Apazidis A, Saha AK, Gamble J, Patel A, Kemp BE, Witters LA, Ruderman NB (1997). "Contraction-induced changes in acetyl-CoA carboxylase and 5'-AMP-activated kinase in skeletal muscle". J. Biol. Chem. 272 (20): 13255–61. doi:10.1074/jbc.272.20.13255. PMID9148944.
Stapleton D, Woollatt E, Mitchelhill KI, Nicholl JK, Fernandez CS, Michell BJ, Witters LA, Power DA, Sutherland GR, Kemp BE (1997). "AMP-activated protein kinase isoenzyme family: subunit structure and chromosomal location". FEBS Lett. 409 (3): 452–6. doi:10.1016/S0014-5793(97)00569-3. PMID9224708.
Mu J, Brozinick JT, Valladares O, Bucan M, Birnbaum MJ (2001). "A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle". Mol. Cell. 7 (5): 1085–94. doi:10.1016/S1097-2765(01)00251-9. PMID11389854.
Minokoshi Y, Kim YB, Peroni OD, Fryer LG, Müller C, Carling D, Kahn BB (2002). "Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase". Nature. 415 (6869): 339–43. doi:10.1038/415339a. PMID11797013.
Dubbelhuis PF, Meijer AJ (2002). "Hepatic amino acid-dependent signaling is under the control of AMP-dependent protein kinase". FEBS Lett. 521 (1–3): 39–42. doi:10.1016/S0014-5793(02)02815-6. PMID12067722.
Esumi H, Izuishi K, Kato K, Hashimoto K, Kurashima Y, Kishimoto A, Ogura T, Ozawa T (2002). "Hypoxia and nitric oxide treatment confer tolerance to glucose starvation in a 5'-AMP-activated protein kinase-dependent manner". J. Biol. Chem. 277 (36): 32791–8. doi:10.1074/jbc.M112270200. PMID12091379.
Nielsen JN, Mustard KJ, Graham DA, Yu H, MacDonald CS, Pilegaard H, Goodyear LJ, Hardie DG, Richter EA, Wojtaszewski JF (2003). "5'-AMP-activated protein kinase activity and subunit expression in exercise-trained human skeletal muscle". J. Appl. Physiol. 94 (2): 631–41. doi:10.1152/japplphysiol.00642.2002. PMID12391032.
Wojtaszewski JF, Mourtzakis M, Hillig T, Saltin B, Pilegaard H (2002). "Dissociation of AMPK activity and ACCbeta phosphorylation in human muscle during prolonged exercise". Biochem. Biophys. Res. Commun. 298 (3): 309–16. doi:10.1016/S0006-291X(02)02465-8. PMID12413941.
Hallows KR, McCane JE, Kemp BE, Witters LA, Foskett JK (2003). "Regulation of channel gating by AMP-activated protein kinase modulates cystic fibrosis transmembrane conductance regulator activity in lung submucosal cells". J. Biol. Chem. 278 (2): 998–1004. doi:10.1074/jbc.M210621200. PMID12427743.