Serine/threonine-protein kinase TBK1 is an enzyme that in humans is encoded by the TBK1gene.[1][2][3]
The NF-kappa-B (NFKB) complex of proteins is inhibited by I-kappa-B (IKB) proteins, which inactivate NFKB by trapping it in the cytoplasm. Phosphorylation of serine residues on the IKB proteins by IKB kinases marks them for destruction via the ubiquitination pathway, thereby allowing activation and nuclear translocation of the NFKB complex. The protein encoded by this gene is similar to IKB kinases and can mediate NFKB activation in response to certain growth factors. For example, the protein can form a complex with the IKB protein TANK and TRAF2 and release the NFKB inhibition caused by TANK.[3]
Transcriptional factors activated upon TBK1 activation include IRF3, IRF7[8] and ZEB1.
[9]
Clinical significance
Inhibition of IκB kinase (IKK) and IKK-related kinases, IKBKE (IKKε) and TANK-binding kinase 1 (TBK1), has been investigated as a therapeutic option for the treatment of inflammatory diseases and cancer.[10]
↑Tojima Y, Fujimoto A, Delhase M, Chen Y, Hatakeyama S, Nakayama K, Kaneko Y, Nimura Y, Motoyama N, Ikeda K, Karin M, Nakanishi M (May 2000). "NAK is an IkappaB kinase-activating kinase". Nature. 404 (6779): 778–82. doi:10.1038/35008109. PMID10783893.
↑Chou MM, Hanafusa H (March 1995). "A novel ligand for SH3 domains. The Nck adaptor protein binds to a serine/threonine kinase via an SH3 domain". J. Biol. Chem. 270 (13): 7359–64. doi:10.1074/jbc.270.13.7359. PMID7706279.
↑ 5.05.1Bouwmeester T, Bauch A, Ruffner H, Angrand PO, Bergamini G, Croughton K, Cruciat C, Eberhard D, Gagneur J, Ghidelli S, Hopf C, Huhse B, Mangano R, Michon AM, Schirle M, Schlegl J, Schwab M, Stein MA, Bauer A, Casari G, Drewes G, Gavin AC, Jackson DB, Joberty G, Neubauer G, Rick J, Kuster B, Superti-Furga G (February 2004). "A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway". Nat. Cell Biol. 6 (2): 97–105. doi:10.1038/ncb1086. PMID14743216.
↑Llona-Minguez S, Baiget J, Mackay SP (2013). "Small-molecule inhibitors of IκB kinase (IKK) and IKK-related kinases". Pharm Pat Anal. 2 (4): 481–98. doi:10.4155/ppa.13.31. PMID24237125.
Further reading
Chou MM, Hanafusa H (1995). "A novel ligand for SH3 domains. The Nck adaptor protein binds to a serine/threonine kinase via an SH3 domain". J. Biol. Chem. 270 (13): 7359–64. doi:10.1074/jbc.270.13.7359. PMID7706279.
Chen ZJ, Parent L, Maniatis T (1996). "Site-specific phosphorylation of IkappaBalpha by a novel ubiquitination-dependent protein kinase activity". Cell. 84 (6): 853–62. doi:10.1016/S0092-8674(00)81064-8. PMID8601309.
Zandi E, Chen Y, Karin M (1998). "Direct phosphorylation of IkappaB by IKKalpha and IKKbeta: discrimination between free and NF-kappaB-bound substrate". Science. 281 (5381): 1360–3. doi:10.1126/science.281.5381.1360. PMID9721103.
Kishore N, Huynh QK, Mathialagan S, et al. (2002). "IKK-i and TBK-1 are enzymatically distinct from the homologous enzyme IKK-2: comparative analysis of recombinant human IKK-i, TBK-1, and IKK-2". J. Biol. Chem. 277 (16): 13840–7. doi:10.1074/jbc.M110474200. PMID11839743.
Chariot A, Leonardi A, Muller J, et al. (2002). "Association of the adaptor TANK with the I kappa B kinase (IKK) regulator NEMO connects IKK complexes with IKK epsilon and TBK1 kinases". J. Biol. Chem. 277 (40): 37029–36. doi:10.1074/jbc.M205069200. PMID12133833.
Li SF, Fujita F, Hirai M, et al. (2003). "Genomic structure and characterization of the promoter region of the human NAK gene". Gene. 304: 57–64. doi:10.1016/S0378-1119(02)01179-4. PMID12568715.
Fitzgerald KA, McWhirter SM, Faia KL, et al. (2003). "IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway". Nat. Immunol. 4 (5): 491–6. doi:10.1038/ni921. PMID12692549.
Sharma S, tenOever BR, Grandvaux N, et al. (2003). "Triggering the interferon antiviral response through an IKK-related pathway". Science. 300 (5622): 1148–51. doi:10.1126/science.1081315. PMID12702806.
Matsuda A, Suzuki Y, Honda G, et al. (2003). "Large-scale identification and characterization of human genes that activate NF-kappaB and MAPK signaling pathways". Oncogene. 22 (21): 3307–18. doi:10.1038/sj.onc.1206406. PMID12761501.
Sato S, Sugiyama M, Yamamoto M, et al. (2004). "Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-kappa B and IFN-regulatory factor-3, in the Toll-like receptor signaling". J. Immunol. 171 (8): 4304–10. doi:10.4049/jimmunol.171.8.4304. PMID14530355.
Ota T, Suzuki Y, Nishikawa T, et al. (2004). "Complete sequencing and characterization of 21,243 full-length human cDNAs". Nat. Genet. 36 (1): 40–5. doi:10.1038/ng1285. PMID14702039.
Bouwmeester T, Bauch A, Ruffner H, et al. (2004). "A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway". Nat. Cell Biol. 6 (2): 97–105. doi:10.1038/ncb1086. PMID14743216.
Kuai J, Wooters J, Hall JP, et al. (2005). "NAK is recruited to the TNFR1 complex in a TNFalpha-dependent manner and mediates the production of RANTES: identification of endogenous TNFR-interacting proteins by a proteomic approach". J. Biol. Chem. 279 (51): 53266–71. doi:10.1074/jbc.M411037200. PMID15485837.
Buss H, Dörrie A, Schmitz ML, et al. (2005). "Constitutive and interleukin-1-inducible phosphorylation of p65 NF-{kappa}B at serine 536 is mediated by multiple protein kinases including I{kappa}B kinase (IKK)-{alpha}, IKK{beta}, IKK{epsilon}, TRAF family member-associated (TANK)-binding kinase 1 (TBK1), and an unknown kinase and couples p65 to TATA-binding protein-associated factor II31-mediated interleukin-8 transcription". J. Biol. Chem. 279 (53): 55633–43. doi:10.1074/jbc.M409825200. PMID15489227.