Brain Stem Gliomas pathophysiology

Revision as of 16:15, 18 September 2012 by Prashanthsaddala (talk | contribs)
Jump to navigation Jump to search

Brain Stem Gliomas Microchapters

Home

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Brain Stem Gliomas from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

Laboratory Findings

X Ray

CT

MRI

Echocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Surgery

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Brain Stem Gliomas pathophysiology On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Brain Stem Gliomas pathophysiology

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Brain Stem Gliomas pathophysiology

CDC on Brain Stem Gliomas pathophysiology

Brain Stem Gliomas pathophysiology in the news

Blogs on Brain Stem Gliomas pathophysiology

Directions to Hospitals Treating Brain Stem Gliomas

Risk calculators and risk factors for Brain Stem Gliomas pathophysiology

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Overview

Pathophysiology

These tumors have a predilection to originate from the left side. Most are located in the pons; however, medulla and midbrain may be involved as well. Brainstem gliomas are highly aggressive brain tumors.

Anatomic location determines the pathophysiological manifestation of the tumor. With tectal lesions, hydrocephalus may occur as a result of fourth ventricular compression. With pontine and cervicomedullary lesions, cranial nerve or long tract signs are observed commonly.

References

Template:WH Template:WS