Hypertrophic cardiomyopathy natural history

Jump to navigation Jump to search

Hypertrophic Cardiomyopathy Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Hypertrophic Cardiomyopathy from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X Ray

Echocardiography and Ultrasound

CT scan

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Interventions

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Hypertrophic cardiomyopathy natural history On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Hypertrophic cardiomyopathy natural history

CDC on Hypertrophic cardiomyopathy natural history

Hypertrophic cardiomyopathy natural history in the news

Blogs on Hypertrophic cardiomyopathy natural history

Directions to Hospitals Treating Hypertrophic cardiomyopathy

Risk calculators and risk factors for Hypertrophic cardiomyopathy natural history

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1];Associate Editor(s)-In-Chief: Lakshmi Gopalakrishnan, M.B.B.S. [2]

Overview

The natural history of hypertrophic cardiomyopathy is quite variable. Signs and symptoms range from none, to atrial fibrillation, to heart failure, to embolic stroke, to sudden cardiac death[1][2][3][4][5]. Signs and symptoms are quite variable from individual to individual but are also quite variable within a given family (all of whom carry the same mutation). The disease is quite variable in the timing of its appearance and may appear anywhere from infancy to late in adult life. About 25% of HCM patients achieve normal longevity[6][7][8][9]. The myosin binding proteins C genetic variant carries a good prognosis. The presence of VT / VF carries the poorest prognosis. The severity of the outflow gradient is also related to prognosis. Athletes should be screened for HOCM based upon a family history of sudden cardiac death and a murmur on physical examination. Electrocardiograms and echocardiograms are not cost effective screening tools in this population with a low pre-test probability of disease.

Time and Age Dependent Appearance of Left Ventricular Hypertrophy

Left ventricular hypertrophy may be absent in childhood. It may then appear following the rapid growth of adolescence and may first appear at age 17 to 18[10][11][12].

Sudden Cardiac Death

The incidence of sudden cardiac death (SCD) in patients with HCM is 2 to 4 percent per year in adults, and a 4 to 6 percent per year in children and adolescents[13].

Among end stage patients with a left ventricular ejection fraction < 50%, the risk of SCD over 5 years may be as high as 47%. In this population, syncope has been identified as an independent correlate of sudden cardiac death (hazard ratio = 6.15; 95% confidence interval, 2.40-15.75; P < .001)[14].

A review of 78 patients with HCM who died suddenly or survived a cardiac arrest episode showed that 71 percent were younger than 30 years of age, 54 percent were without functional limitation, and 61 percent were performing sedentary or minimal physical activity at the time of cardiac arrest.

Predictors of Sudden Cardiac Death

There are few predictors of SCD in patients with HCM.

Prognosis in Survivors of Sudden Cardiac Death

Survivors of SCD have a poor prognosis. Event free survival at 1,5 and 10 years was 83, 65 and 53 percent respectively.


2011 ACCF/AHA Guideline Recommendations: SCD Risk Stratification

[17][18]

Class I
1. All patients with HCM should undergo comprehensive SCD risk stratification at initial evaluation to determine the presence of the following: (50,53,55,127,128,386–392)
a. A personal history for ventricular fibrillation, sustained VT, or SCD events, including appropriate ICD therapy for ventricular tachyarrhythmias.† (Level of Evidence: B)
b. A family history for SCD events, including appropriate ICD therapy for ventricular tachyarrhythmias.† (Level of Evidence: B)
c. Unexplained syncope. (Level of Evidence: B)
d. Documented NSVT defined as 3 or more beats at greater than or equal to 120 bpm on ambulatory (Holter) ECG. (Level of Evidence: B)
e. Maximal LV wall thickness greater than or equal to 30 mm. (Level of Evidence: B)
Class III (Harm)
1. Invasive electrophysiologic testing as routine SCD risk stratification for patients with HCM should not be performed. (Level of Evidence: C)
Class IIa
1. It is reasonable to assess blood pressure response during exercise as part of SCD risk stratification in patients with HCM.(89,127,390) (Level of Evidence: B)
2. SCD risk stratification is reasonable on a periodic basis (every 12 to 24 months) for patients with HCM who have not undergone ICD implantation but would otherwise be eligible in the event that risk factors are identified (12 to 24 months).(Level of Evidence: C)
Class IIb
1. The usefulness of the following potential SCD risk modifiers is unclear but might be considered in selected patients with HCM for whom risk remains borderline after documentation of conventional risk factors:
a. CMR imaging with LGE.(184,188) (Level of Evidence: C)
b. Double and compound mutations (i.e., >1). (Level of Evidence: C)
c. Marked LVOT obstruction.(45,127,143,390) (Level of Evidence: B)

Guideline Resources

2011 ACCF/AHA Guideline for the Diagnosis and Treatment of Hypertrophic Cardiomyopathy [17][18]

References

  1. Maron BJ. Hypertrophic cardiomyopathy. Lancet 1997;350:127–33.
  2. Maron BJ. Hypertrophic cardiomyopathy. A systematic review. JAMA 2002;287:1308–20.
  3. Maki S, Ikeda H, Muro A et al. Predictors of sudden cardiac death in hypertrophic cardiomyopathy. Am J Cardiol 1998;82:774–8.
  4. Maron BJ, Casey SA, Poliac LC, Gohman TE, Almquist AK, Aeppli DM. Clinical course of hypertrophic cardiomyopathy in a regional United States cohort. JAMA 1999;281:650–5.
  5. Maron BJ, Olivotto I, Bellone P et al. Clinical profile of stroke in 900 patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 2002;39:301–7.
  6. Maron BJ. Hypertrophic cardiomyopathy. A systematic review. JAMA 2002;287:1308–20.
  7. Maron BJ, Casey SA, Poliac LC, Gohman TE, Almquist AK, Aeppli DM. Clinical course of hypertrophic cardiomyopathy in a regional United States cohort. JAMA 1999;281:650–5.
  8. Fay WP, Taliercio CP, Ilstrup DM, Tajik AJ, Gersh BJ. Natural history of hypertrophic cardiomyopathy in the elderly. J Am Coll Cardiol 1990;16:821–6.
  9. Takagi E, Yamakado T, Nakano T. Prognosis of completely asymptomatic adult patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 1999;33:206–11.
  10. Hagege AA, Dubourg O, Desnos M et al. Familial hypertrophic cardiomyopathy. Cardiac ultrasonic abnormalities in genetically affected subjects without echocardiographic evidence of left ventricular hypertrophy. Eur Heart J 1998;19:490–9.
  11. Maron BJ, Spirito P, Wesley Y, Arce J. Development and progression of left ventricular hypertrophy in children with hypertrophic cardiomyopathy. N Engl J Med 1986;315:610–4.
  12. Spirito P, Maron BJ. Absence of progression of left ventricular hypertrophy in adult patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 1987;9:1013–7.
  13. Elliott PM, Poloniecki J, Dickie S, Sharma S, Monserrat L, Varnava A; et al. (2000). "Sudden death in hypertrophic cardiomyopathy: identification of high risk patients". J Am Coll Cardiol. 36 (7): 2212–8. PMID 11127463.
  14. Kawarai H, Kajimoto K, Minami Y, Hagiwara N, Kasanuki H (2011). "Risk of sudden death in end-stage hypertrophic cardiomyopathy". J Card Fail. 17 (6): 459–64. doi:10.1016/j.cardfail.2011.01.015. PMID 21624733.
  15. Maron BJ, Tajik AJ, Ruttenberg HD et al. Hypertrophic cardiomyopathy in infants. Clinical features and natural history. Circulation 1982; 65:7–17
  16. Skinner JR, Manzoor A, Hayes AM, Joffe HS, Martin RP. A regional study of presentation and outcome of hypertrophic cardiomyopathy in infants. Heart 1997;77:229–33.
  17. 17.0 17.1 Gersh BJ, Maron BJ, Bonow RO, Dearani JA, Fifer MA, Link MS, Naidu SS, Nishimura RA, Ommen SR, Rakowski H, Seidman CE, Towbin JA, Udelson JE, Yancy CW (2011). "2011 ACCF/AHA Guideline for the Diagnosis and Treatment of Hypertrophic Cardiomyopathy: Executive Summary A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines Developed in Collaboration With the American Association for Thoracic Surgery, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons". Journal of the American College of Cardiology. 58 (25): 2703–38. doi:10.1016/j.jacc.2011.10.825. PMID 22075468. Retrieved 2011-12-19. Unknown parameter |month= ignored (help)
  18. 18.0 18.1 Gersh BJ, Maron BJ, Bonow RO, Dearani JA, Fifer MA, Link MS, Naidu SS, Nishimura RA, Ommen SR, Rakowski H, Seidman CE, Towbin JA, Udelson JE, Yancy CW (2011). "2011 ACCF/AHA Guideline for the Diagnosis and Treatment of Hypertrophic Cardiomyopathy A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines Developed in Collaboration With the American Association for Thoracic Surgery, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons". Journal of the American College of Cardiology. 58 (25): e212–60. doi:10.1016/j.jacc.2011.06.011. PMID 22075469. Retrieved 2011-12-19. Unknown parameter |month= ignored (help)


Template:WikiDoc Sources