Tigecycline microbiology

Revision as of 04:30, 9 January 2014 by ShiSheng (talk | contribs) (Created page with "__NOTOC__ {{Tigecycline}} {{CMG}}; {{AE}} {{SS}} ==Microbiology== <div> ===Mechanism(s) of Resistance=== To date there has been no cross-resistance observed between tigecycl...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Tigecycline
TYGACIL® FDA Package Insert
Description
Clinical Pharmacology
Microbiology
Indications and Usage
Contraindications
Warnings and Precautions
Adverse Reactions
Drug Interactions
Overdosage
Dosage and Administration
How Supplied
Labels and Packages

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Sheng Shi, M.D. [2]

Microbiology

Mechanism(s) of Resistance

To date there has been no cross-resistance observed between tigecycline and other antibacterials. Tigecycline is not affected by the two major tetracycline-resistance mechanisms, ribosomal protection and efflux. Additionally, tigecycline is not affected by resistance mechanisms such as beta-lactamases (including extended spectrum beta-lactamases), target-site modifications, macrolide efflux pumps or enzyme target changes (e.g. gyrase/topoisomerases). Tigecycline resistance in some bacteria (e.g.Acinetobacter calcoaceticus-Acinetobacter baumannii complex) is associated with multi-drug resistant (MDR) efflux pumps.

Interaction with Other Antimicrobials

In vitro studies have not demonstrated antagonism between tigecycline and other commonly used antibacterials.

Tigecycline has been shown to be active against most of the following bacteria, both in vitro and in clinical infections [see Indications and Usage (1)].

Facultative Gram-positive bacteria

Enterococcus faecalis (Vancomycin-susceptible isolates)

Staphylococcus aureus (methicillin-susceptible and -resistant isolates)

Streptococcus agalactiae

Streptococcus anginosus grp. (includes S. anginosus, S. intermedius, and S. constellatus)

Streptococcus pneumoniae (penicillin-susceptible isolates)

Streptococcus pyogenes

Facultative Gram-negative bacteria

Citrobacter freundii

Enterobacter cloacae

Escherichia coli

Haemophilus influenzae (beta-lactamase negative isolates)

Klebsiella oxytoca

Klebsiella pneumoniae

Legionella pneumophila

Anaerobic bacteria

Bacteroides fragilis

Bacteroides thetaiotaomicron

Bacteroides uniformis

Bacteroides vulgatus

Clostridium perfringens

Peptostreptococcus micros

At least 90% of the following bacteria exhibit in vitro minimum inhibitory concentrations (MICs) that are at concentrations that are achievable using the prescribed dosing regimens. However, the clinical significance of this is unknown because the safety and effectiveness of tigecycline in treating clinical infections due to these bacteria have not been established in adequate and well-controlled clinical trials.

Facultative Gram-positive bacteria

Enterococcus avium

Enterococcus casseliflavus

Enterococcus faecalis (Vancomycin-resistant isolates)

Enterococcus faecium (Vancomycin-susceptible and -resistant isolates)

Enterococcus gallinarum

Listeria monocytogenes

Staphylococcus epidermidis (methicillin-susceptible and -resistant isolates)

Staphylococcus haemolyticus

Facultative Gram-negative bacteria

Acinetobacter baumannii1

Aeromonas hydrophila

Citrobacter koseri

Enterobacter aerogenes

Haemophilus influenzae (ampicillin-resistant)

Haemophilus parainfluenzae

Pasteurella multocida

Serratia marcescens

Stenotrophomonas maltophilia

1 There have been reports of the development of tigecycline resistance in Acinetobacter infections seen during the course of standard treatment. Such resistance appears to be attributable to an MDR efflux pump mechanism. While monitoring for relapse of infection is important for all infected patients, more frequent monitoring in this case is suggested. If relapse is suspected, blood and other specimens should be obtained and cultured for the presence of bacteria. All bacterial isolates should be identified and tested for susceptibility to tigecycline and other appropriate antimicrobials.

Anaerobic bacteria

Bacteroides distasonis

Bacteroides ovatus

Peptostreptococcus spp.

Porphyromonas spp.

Prevotella spp.

Other bacteria

Mycobacterium abscessus

Mycobacterium fortuitum

Susceptibility Test Methods

When available, the clinical microbiology laboratory should provide cumulative results of the in vitro susceptibility test results for antimicrobial drugs used in local hospitals and practice areas to the physician as periodic reports that describe the susceptibility profile of nosocomial and community-acquired pathogens. These reports should aid the physician in selecting the most effective antimicrobial.

Dilution Techniques

Quantitative methods are used to determine antimicrobial minimum inhibitory concentrations (MICs). These MICs provide estimates of the susceptibility of bacteria to antimicrobial compounds. The MICs should be determined using a standardized procedure based on dilution methods (broth, agar, or microdilution)1,3,4 or equivalent using standardized inoculum and concentrations of tigecycline. For broth dilution tests for aerobic organisms, MICs must be determined in testing medium that is fresh (<12h old). The MIC values should be interpreted according to the criteria provided in Table 4.

Diffusion Techniques

Quantitative methods that require measurement of zone diameters also provide reproducible estimates of the susceptibility of bacteria to antimicrobial compounds. The standardized procedure2,4 requires the use of standardized inoculum concentrations. This procedure uses paper disks impregnated with 15 mcg tigecycline to test the susceptibility of bacteria to tigecycline. Interpretation involves correlation of the diameter obtained in the disk test with the MIC for tigecycline. Reports from the laboratory providing results of the standard single-disk susceptibility test with a 15 mcg tigecycline disk should be interpreted according to the criteria in Table 4.

Anaerobic Techniques

Anaerobic susceptibility testing with tigecycline should be done by the agar dilution method3 since quality control parameters for broth-dilution are not established.

File:Telavancin 3.jpg

A report of "Susceptible" indicates that the pathogen is likely to be inhibited if the antimicrobial compound reaches the concentrations usually achievable. A report of "Intermediate" indicates that the result should be considered equivocal, and, if the microorganism is not fully susceptible to alternative, clinically feasible drugs, the test should be repeated. This category implies possible clinical applicability in body sites where the drug is physiologically concentrated or in situations where high dosage of drug can be used. This category also provides a buffer zone that prevents small uncontrolled technical factors from causing major discrepancies in interpretation. A report of "Resistant" indicates that the pathogen is not likely to be inhibited if the antimicrobial compound reaches the concentrations usually achievable; other therapy should be selected.

Quality Control

As with other susceptibility techniques, the use of laboratory control microorganisms is required to control the technical aspects of the laboratory standardized procedures.1,2,3,4 Standard tigecycline powder should provide the MIC values provided in Table 5. For the diffusion technique using the 15 mcg tigecycline disk the criteria provided in Table 5 should be achieved.

File:Telavancin 4.jpg

[1]

References

  1. "TYGACIL (TIGECYCLINE) INJECTION, POWDER, LYOPHILIZED, FOR SOLUTION [WYETH PHARMACEUTICALS COMPANY, A SUBSIDIARY OF PFIZER INC.]". Retrieved 9 January 2014.

Adapted from the FDA Package Insert.}}