This gene product belongs to the 14-3-3 family of proteins which mediate signal transduction by binding to phosphoserine-containing proteins. This highly conserved protein family is found in both plants and mammals, and this protein is 100% identical to the mouse ortholog. It interacts with CDC25 phosphatases, RAF1 and IRS1 proteins, suggesting its role in diverse biochemical activities related to signal transduction, such as cell division and regulation of insulin sensitivity. It has also been implicated in the pathogenesis of small cell lung cancer.[2]
↑Luk SC, Garcia-Barcelo M, Tsui SK, Fung KP, Lee CY, Waye MM (December 1997). "Assignment of the human 14-3-3 epsilon isoform (YWHAE) to human chromosome 17p13 by in situ hybridization". Cytogenet Cell Genet. 78 (2): 105–6. doi:10.1159/000134638. PMID9371399.
↑Vincenz C, Dixit VM (August 1996). "14-3-3 proteins associate with A20 in an isoform-specific manner and function both as chaperone and adapter molecules". J. Biol. Chem. 271 (33): 20029–34. doi:10.1074/jbc.271.33.20029. PMID8702721.
↑Mils V, Baldin V, Goubin F, Pinta I, Papin C, Waye M, Eychene A, Ducommun B (March 2000). "Specific interaction between 14-3-3 isoforms and the human CDC25B phosphatase". Oncogene. 19 (10): 1257–65. doi:10.1038/sj.onc.1203419. PMID10713667.
↑ 9.09.1Craparo A, Freund R, Gustafson TA (April 1997). "14-3-3 (epsilon) interacts with the insulin-like growth factor I receptor and insulin receptor substrate I in a phosphoserine-dependent manner". J. Biol. Chem. 272 (17): 11663–9. doi:10.1074/jbc.272.17.11663. PMID9111084.
↑Fanger GR, Widmann C, Porter AC, Sather S, Johnson GL, Vaillancourt RR (February 1998). "14-3-3 proteins interact with specific MEK kinases". J. Biol. Chem. 273 (6): 3476–83. doi:10.1074/jbc.273.6.3476. PMID9452471.
↑Toyo-oka K, Shionoya A, Gambello MJ, Cardoso C, Leventer R, Ward HL, Ayala R, Tsai LH, Dobyns W, Ledbetter D, Hirotsune S, Wynshaw-Boris A (July 2003). "14-3-3epsilon is important for neuronal migration by binding to NUDEL: a molecular explanation for Miller-Dieker syndrome". Nat. Genet. 34 (3): 274–85. doi:10.1038/ng1169. PMID12796778.
↑Kimura MT, Irie S, Shoji-Hoshino S, Mukai J, Nadano D, Oshimura M, Sato TA (May 2001). "14-3-3 is involved in p75 neurotrophin receptor-mediated signal transduction". J. Biol. Chem. 276 (20): 17291–300. doi:10.1074/jbc.M005453200. PMID11278287.
↑McGonigle S, Beall MJ, Feeney EL, Pearce EJ (February 2001). "Conserved role for 14-3-3epsilon downstream of type I TGFbeta receptors". FEBS Lett. 490 (1–2): 65–9. doi:10.1016/S0014-5793(01)02133-0. PMID11172812.
Further reading
Kino T, Pavlakis GN (2004). "Partner molecules of accessory protein Vpr of the human immunodeficiency virus type 1". DNA Cell Biol. 23 (4): 193–205. doi:10.1089/104454904773819789. PMID15142377.
Kino T, Chrousos GP (2004). "Human immunodeficiency virus type-1 accessory protein Vpr: a causative agent of the AIDS-related insulin resistance/lipodystrophy syndrome?". Ann. N. Y. Acad. Sci. 1024: 153–67. doi:10.1196/annals.1321.013. PMID15265780.
Jones DH, Ley S, Aitken A (1995). "Isoforms of 14-3-3 protein can form homo- and heterodimers in vivo and in vitro: implications for function as adapter proteins". FEBS Lett. 368 (1): 55–8. doi:10.1016/0014-5793(95)00598-4. PMID7615088.
Jin DY, Lyu MS, Kozak CA, Jeang KT (1996). "Function of 14-3-3 proteins". Nature. 382 (6589): 308. doi:10.1038/382308a0. PMID8684458.
Vincenz C, Dixit VM (1996). "14-3-3 proteins associate with A20 in an isoform-specific manner and function both as chaperone and adapter molecules". J. Biol. Chem. 271 (33): 20029–34. doi:10.1074/jbc.271.33.20029. PMID8702721.
Chong SS, Tanigami A, Roschke AV, Ledbetter DH (1997). "14-3-3 epsilon has no homology to LIS1 and lies telomeric to it on chromosome 17p13.3 outside the Miller-Dieker syndrome chromosome region". Genome Res. 6 (8): 735–41. doi:10.1101/gr.6.8.735. PMID8858348.
Craparo A, Freund R, Gustafson TA (1997). "14-3-3 (epsilon) interacts with the insulin-like growth factor I receptor and insulin receptor substrate I in a phosphoserine-dependent manner". J. Biol. Chem. 272 (17): 11663–9. doi:10.1074/jbc.272.17.11663. PMID9111084.
Ogihara T, Isobe T, Ichimura T, Taoka M, Funaki M, Sakoda H, Onishi Y, Inukai K, Anai M, Fukushima Y, Kikuchi M, Yazaki Y, Oka Y, Asano T (1997). "14-3-3 protein binds to insulin receptor substrate-1, one of the binding sites of which is in the phosphotyrosine binding domain". J. Biol. Chem. 272 (40): 25267–74. doi:10.1074/jbc.272.40.25267. PMID9312143.
Hsu SY, Kaipia A, Zhu L, Hsueh AJ (1997). "Interference of BAD (Bcl-xL/Bcl-2-associated death promoter)-induced apoptosis in mammalian cells by 14-3-3 isoforms and P11". Mol. Endocrinol. 11 (12): 1858–67. doi:10.1210/me.11.12.1858. PMID9369453.
Luk SC, Ngai SM, Tsui SK, Fung KP, Lee CY, Waye MM (1999). "In vivo and in vitro association of 14-3-3 epsilon isoform with calmodulin: implication for signal transduction and cell proliferation". J. Cell. Biochem. 73 (1): 31–5. doi:10.1002/(SICI)1097-4644(19990401)73:1<31::AID-JCB4>3.0.CO;2-X. PMID10088721.
Ostrerova N, Petrucelli L, Farrer M, Mehta N, Choi P, Hardy J, Wolozin B (1999). "alpha-Synuclein shares physical and functional homology with 14-3-3 proteins". J. Neurosci. 19 (14): 5782–91. PMID10407019.
Finlin BS, Andres DA (1999). "Phosphorylation-dependent association of the Ras-related GTP-binding protein Rem with 14-3-3 proteins". Arch. Biochem. Biophys. 368 (2): 401–12. doi:10.1006/abbi.1999.1316. PMID10441394.
Dorner C, Ullrich A, Häring HU, Lammers R (1999). "The kinesin-like motor protein KIF1C occurs in intact cells as a dimer and associates with proteins of the 14-3-3 family". J. Biol. Chem. 274 (47): 33654–60. doi:10.1074/jbc.274.47.33654. PMID10559254.