ATP-binding cassette sub-family G member 8 is a protein that in humans is encoded by the ABCG8gene.[1][2][3]
The protein encoded by this gene is a member of the superfamily of ATP-binding cassette (ABC) transporters. ABC proteins transport various molecules across extra- and intra-cellular membranes. ABC genes are divided into seven distinct subfamilies (ABC1, MDR/TAP, MRP, ALD, OABP, GCN20, White). This protein is a member of the White subfamily. The protein encoded by this gene functions as a half-transporter to limit intestinal absorption and promote biliary excretion of sterols. It is expressed in a tissue-specific manner in the liver, colon, and intestine. This gene is tandemly arrayed on chromosome 2, in a head-to-head orientation with family member ABCG5. Mutations in this gene may contribute to sterol accumulation and atherosclerosis, and have been observed in patients with sitosterolemia.[3]
↑Grunhage F, Acalovschi M, Tirziu S, Walier M, Wienker TF, Ciocan A, Mosteanu O, Sauerbruch T, Lammert F (Sep 2007). "Increased gallstone risk in humans conferred by common variant of hepatic ATP-binding cassette transporter for cholesterol". Hepatology. 46 (3): 793–801. doi:10.1002/hep.21847. PMID17626266.
Schmitz G, Langmann T, Heimerl S (2002). "Role of ABCG1 and other ABCG family members in lipid metabolism". J. Lipid Res. 42 (10): 1513–20. PMID11590207.
Berge KE, von Bergmann K, Lutjohann D, et al. (2002). "Heritability of plasma noncholesterol sterols and relationship to DNA sequence polymorphism in ABCG5 and ABCG8". J. Lipid Res. 43 (3): 486–94. PMID11893785.
Iida A, Saito S, Sekine A, et al. (2002). "Catalog of 605 single-nucleotide polymorphisms (SNPs) among 13 genes encoding human ATP-binding cassette transporters: ABCA4, ABCA7, ABCA8, ABCD1, ABCD3, ABCD4, ABCE1, ABCF1, ABCG1, ABCG2, ABCG4, ABCG5, and ABCG8". J. Hum. Genet. 47 (6): 285–310. doi:10.1007/s100380200041. PMID12111378.
Heimerl S, Langmann T, Moehle C, et al. (2002). "Mutations in the human ATP-binding cassette transporters ABCG5 and ABCG8 in sitosterolemia". Hum. Mutat. 20 (2): 151. doi:10.1002/humu.9047. PMID12124998.
Remaley AT, Bark S, Walts AD, et al. (2002). "Comparative genome analysis of potential regulatory elements in the ABCG5-ABCG8 gene cluster". Biochem. Biophys. Res. Commun. 295 (2): 276–82. doi:10.1016/S0006-291X(02)00652-6. PMID12150943.
Graf GA, Yu L, Li WP, et al. (2004). "ABCG5 and ABCG8 are obligate heterodimers for protein trafficking and biliary cholesterol excretion". J. Biol. Chem. 278 (48): 48275–82. doi:10.1074/jbc.M310223200. PMID14504269.
Kajinami K, Brousseau ME, Nartsupha C, et al. (2004). "ATP binding cassette transporter G5 and G8 genotypes and plasma lipoprotein levels before and after treatment with atorvastatin". J. Lipid Res. 45 (4): 653–6. doi:10.1194/jlr.M300278-JLR200. PMID14703505.
Hubácek JA, Berge KE, Stefková J, et al. (2005). "Polymorphisms in ABCG5 and ABCG8 transporters and plasma cholesterol levels". Physiological research / Academia Scientiarum Bohemoslovaca. 53 (4): 395–401. PMID15311998.
Yu L, Gupta S, Xu F, et al. (2005). "Expression of ABCG5 and ABCG8 is required for regulation of biliary cholesterol secretion". J. Biol. Chem. 280 (10): 8742–7. doi:10.1074/jbc.M411080200. PMID15611112.
Langheim S, Yu L, von Bergmann K, et al. (2005). "ABCG5 and ABCG8 require MDR2 for secretion of cholesterol into bile". J. Lipid Res. 46 (8): 1732–8. doi:10.1194/jlr.M500115-JLR200. PMID15930516.
Lally S, Tan CY, Owens D, Tomkin GH (2006). "Messenger RNA levels of genes involved in dysregulation of postprandial lipoproteins in type 2 diabetes: the role of Niemann-Pick C1-like 1, ATP-binding cassette, transporters G5 and G8, and of microsomal triglyceride transfer protein". Diabetologia. 49 (5): 1008–16. doi:10.1007/s00125-006-0177-8. PMID16518588.