Abacavir lamivudine microbiology

Jump to navigation Jump to search


Abacavir lamivudine
EPZICOM ® FDA Package Insert
Description
Clinical Pharmacology
Microbiology
Indications and Usage
Contraindications
Warnings and Precautions
Adverse Reactions
Drug Interactions
Overdosage
Dosage and Administration
How Supplied
Labels and Packages

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Sheng Shi, M.D. [2]

Microbiology

Antiviral Activity

Abacavir: The antiviral activity of abacavir against HIV-1 was evaluated against a T-cell tropic laboratory strain HIV-1IIIB in lymphoblastic cell lines, a monocyte/macrophage tropic laboratory strain HIV-1BaL in primary monocytes/macrophages, and clinical isolates in peripheral blood mononuclear cells. The concentration of drug necessary to effect viral replication by 50 percent (EC50) ranged from 3.7 to 5.8 μM (1 μM = 0.28 mcg/mL) and 0.07 to 1.0 μM against HIV-1IIIB and HIV-1BaL, respectively, and was 0.26 ± 0.18 μM against 8 clinical isolates. The EC50 values of abacavir against different HIV-1 clades (A-G) ranged from 0.0015 to 1.05 μM, and against HIV-2 isolates, from 0.024 to 0.49 μM. Ribavirin (50 μM) had no effect on the anti–HIV-1 activity of abacavir in cell culture.

Lamivudine: The antiviral activity of lamivudine against HIV-1 was assessed in a number of cell lines (including monocytes and fresh human peripheral blood lymphocytes) using standard susceptibility assays. EC50 values were in the range of 0.003 to 15 μM (1 μM = 0.23 mcg/mL). HIV-1 from therapy-naive subjects with no amino acid substitutions associated with resistance gave median EC50 values of 0.429 µM (range: 0.200 to 2.007 µM) from Virco (n = 92 baseline samples from COLA40263) and 2.35 µM (1.37 to 3.68 µM) from Monogram Biosciences (n = 135 baseline samples from ESS30009). The EC50 values of lamivudine against different HIV-1 clades (A-G) ranged from 0.001 to 0.120 µM, and against HIV-2 isolates from 0.003 to 0.120 μM in peripheral blood mononuclear cells. Ribavirin (50 μM) decreased the anti–HIV-1 activity of lamivudine by 3.5 fold in MT-4 cells.

The combination of abacavir and lamivudine has demonstrated antiviral activity in cell culture against non-subtype B isolates and HIV-2 isolates with equivalent antiviral activity as for subtype B isolates. Abacavir/lamivudine had additive to synergistic activity in cell culture in combination with the nucleoside reverse transcriptase inhibitors (NRTIs) emtricitabine, stavudine, tenofovir, zalcitabine, zidovudine; the non-nucleoside reverse transcriptase inhibitors (NNRTIs) delavirdine, efavirenz, nevirapine; the protease inhibitors (PIs) amprenavir, indinavir, lopinavir, nelfinavir, ritonavir, saquinavir; or the fusion inhibitor, enfuvirtide. Ribavirin, used in combination with interferon for the treatment of HCV infection, decreased the anti-HIV-1 potency of abacavir/lamivudine reproducibly by 2- to 6-fold in cell culture.

Resistance

HIV-1 isolates with reduced susceptibility to the combination of abacavir and lamivudine have been selected in cell culture and have also been obtained from subjects failing abacavir/lamivudine-containing regimens. Genotypic characterization of abacavir/lamivudine-resistant viruses selected in cell culture identified amino acid substitutions M184V/I, K65R, L74V, and Y115F in HIV-1 RT.

Genotypic analysis of isolates selected in cell culture and recovered from abacavir-treated subjects demonstrated that amino acid substitutions K65R, L74V, Y115F, and M184V/I in HIV-1 RT contributed to abacavir resistance. Genotypic analysis of isolates selected in cell culture and recovered from lamivudine-treated subjects showed that the resistance was due to a specific amino acid substitution in HIV-1 RT at codon 184 changing the methionine to either isoleucine or valine (M184V/I). In a trial of therapy-naive adults receiving ZIAGEN 600 mg once daily (n = 384) or 300 mg twice daily (n = 386) in a background regimen of lamivudine 300 mg and efavirenz 600 mg once daily (CNA30021), the incidence of virologic failure at 48 weeks was similar between the 2 groups (11% in both arms). Genotypic (n = 38) and phenotypic analyses (n = 35) of virologic failure isolates from this trial showed that the RT substitutions that emerged during abacavir/lamivudine once-daily and twice-daily therapy were K65R, L74V, Y115F, and M184V/I. The abacavir- and lamivudine-associated resistance substitution M184V/I was the most commonly observed substitution in virologic failure isolates from subjects receiving abacavir/lamivudine once daily (56%, 10/18) and twice daily (40%, 8/20).

Thirty-nine percent (7/18) of the isolates from subjects who experienced virologic failure in the abacavir once-daily arm had a >2.5-fold decrease in abacavir susceptibility with a median-fold decrease of 1.3 (range: 0.5 to 11) compared with 29% (5/17) of the failure isolates in the twice-daily arm with a median-fold decrease of 0.92 (range: 0.7 to 13). Fifty-six percent (10/18) of the virologic failure isolates in the once-daily abacavir group compared with 41% (7/17) of the failure isolates in the twice-daily abacavir group had a >2.5-fold decrease in lamivudine susceptibility with median-fold changes of 81 (range 0.79 to >116) and 1.1 (range 0.68 to >116) in the once-daily and twice-daily abacavir arms, respectively.

Cross-Resistance

Cross-resistance has been observed among NRTIs. Viruses containing abacavir and lamivudine resistance-associated amino acid substitutions, namely, K65R, L74V, M184V, and Y115F, exhibit cross-resistance to didanosine, emtricitabine, lamivudine, tenofovir, and zalcitabine in cell culture and in subjects. The K65R substitution can confer resistance to abacavir, didanosine, emtricitabine, lamivudine, stavudine, tenofovir, and zalcitabine; the L74V substitution can confer resistance to abacavir, didanosine, and zalcitabine; and the M184V substitution can confer resistance to abacavir, didanosine, emtricitabine, lamivudine, and zalcitabine. The combination of abacavir/lamivudine has demonstrated decreased susceptibility to viruses with the substitutions K65R with or without the M184V/I substitution, viruses with L74V plus the M184V/I substitution, and viruses with thymidine analog mutations (TAMs: M41L, D67N, K70R, L210W, T215Y/F, K219 E/R/H/Q/N) plus M184V. An increasing number of TAMs is associated with a progressive reduction in abacavir susceptibility.[1]

References

  1. "EPZICOM (ABACAVIR SULFATE AND LAMIVUDINE) TABLET, FILM COATED [VIIV HEALTHCARE COMPANY]". Retrieved 10 January 2014.

Adapted from the FDA Package Insert.