Cleavage and polyadenylation specificity factor subunit 1 is a protein that in humans is encoded by the CPSF1gene.[1][2][3]
In most cases eukaryotic pre-messenger(m)RNA 3 prime ends are processed in two coordinated steps. First there is a site-specific cleavage by an endonuclease and then the addition of a poly(A) tail at the 3 prime end of the 5 prime cleavage product. Cleavage requires four multisubunit complexes, namely cleavage and polyadenylation specificity factor (CPSF), cleavage stimulation factor (CstF), cleavage factors Im and IIm (CFIm and CFIIm), along with a single subunit poly(A)polymerase (PAP). CPSF1 is the largest component of the CPSF complex composed of CPSF1, CPSF2, CPSF3, CPSF4 and FIP1L1, and located in the nucleus. CPSF1 recognizes the AAUAAA sequence leading to addition of poly(A) to the 3-prime end of the mRNA.[4]
McCracken S, Fong N, Yankulov K, et al. (1997). "The C-terminal domain of RNA polymerase II couples mRNA processing to transcription". Nature. 385 (6614): 357–61. doi:10.1038/385357a0. PMID9002523.
Dantonel JC, Murthy KG, Manley JL, Tora L (1997). "Transcription factor TFIID recruits factor CPSF for formation of 3' end of mRNA". Nature. 389 (6649): 399–402. doi:10.1038/38763. PMID9311784.
Samiotaki M, Balatsos NA, Courtis N, Tsiapalis CM (2001). "Assignment of the 160-kDa subunit of cleavage and polyadenylation specificity factor (CPSF1) to human chromosome 8q24.23 by radiation hybrid mapping". Cytogenet. Cell Genet. 90 (3–4): 234–5. doi:10.1159/000056776. PMID11124521.
Maeda Y, Ito M, Harashima N, et al. (2002). "Cleavage and polyadenylation specificity factor (CPSF)-derived peptides can induce HLA-A2-restricted and tumor-specific CTLs in the majority of gastrointestinal cancer patients". Int. J. Cancer. 99 (3): 409–17. doi:10.1002/ijc.10377. PMID11992410.
Holland L, Gauthier L, Bell-Rogers P, Yankulov K (2002). "Distinct parts of minichromosome maintenance protein 2 associate with histone H3/H4 and RNA polymerase II holoenzyme". Eur. J. Biochem. 269 (21): 5192–202. doi:10.1046/j.1432-1033.2002.03224.x. PMID12392551.
Lehner B, Semple JI, Brown SE, et al. (2004). "Analysis of a high-throughput yeast two-hybrid system and its use to predict the function of intracellular proteins encoded within the human MHC class III region". Genomics. 83 (1): 153–67. doi:10.1016/S0888-7543(03)00235-0. PMID14667819.