Diabetes mellitus type 2 pathophysiology

Jump to navigation Jump to search

Diabetes mellitus main page

Diabetes mellitus type 2 Microchapters

Home

Patient information

Overview

Historical Perspective

Pathophysiology

Causes

Differentiating Diabetes Mellitus Type 2 from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

Chest X Ray

CT

MRI

Echocardiography or Ultrasound

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical therapy

Life Style Modification
Pharmacotherapy
Glycemic Control

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]; Associate Editor(s)-in-Chief: Priyamvada Singh, M.B.B.S. [2]; Cafer Zorkun, M.D., Ph.D. [3],Seyedmahdi Pahlavani, M.D. [4]Anahita Deylamsalehi, M.D.[5]

Overview

The exact pathophysiology of type 2 diabetes mellitus is not fully understood. The underlying pathology is the development of insulin resistance. Contrary to type 1 diabetes, patients with type 2 diabetes sufficiently produce insulin. However, the cellular response to the circulating insulin is diminished in type 2 DM. The mechanism by which the insulin resistance develops is postulated to be influenced by both genetic and environmental factors. Environmental influences on the pathogenesis of type 2 DM include high glycemic diets, central obesity, older age, male gender, low-fiber diet, and highly saturated fat diet.There are some genetic variants and HLA related to type 2 diabetes mellitus. Diabetes type 2 is associated with metabolic disorders, sarcopenia and liver cancer. It also has some associated features with insulin resistance. Gross pathology of pancreas shows serrated borders and reduced volume, which is due to pancreatic cells necrosis. Amyloid deposition, inflammation and fibrosis are some of the microscopic changes in diabetic pancreas.

Pathophysiology

Pathogenesis

Beta-cell function

  • Some carbohydrates are not converted e.g fruit sugar (fructose) is usable as cellular fuel but it is not converted to glucose, and it therefore does not participate in the insulin/glucose metabolic regulatory mechanism.
  • Insulin is used by about two-thirds of the body's cells to absorb glucose from the blood for use as fuel, for conversion to other needed molecules, or for storage.
  • If the amount of insulin available is insufficient, if cells respond poorly to the effects of insulin (insulin insensitivity or resistance), or if the insulin itself is defective, then glucose will not be absorbed properly by those body cells that require it nor will it be stored appropriately in the liver and muscles. The net effect is persistent high levels of blood glucose, poor protein synthesis, and other metabolic derangement, such as acidosis.
Mechanism of insulin release in normal pancreatic beta cells
Mechanism of insulin release in normal pancreatic beta cells

Inflammation and Diabetes

Obesity as the Link Between Diabetes and Inflammation

Systemic Inflammation in Diabetes

Genetics

Associated Conditions

Gross Pathology

Microscopic Pathology

References

  1. Montonen, J.; Knekt, P.; Jarvinen, R.; Reunanen, A. (2004). "Dietary Antioxidant Intake and Risk of Type 2 Diabetes". Diabetes Care. 27 (2): 362–366. doi:10.2337/diacare.27.2.362. ISSN 0149-5992.
  2. van der Schaft, Niels; Schoufour, Josje D.; Nano, Jana; Kiefte-de Jong, Jessica C.; Muka, Taulant; Sijbrands, Eric J. G.; Ikram, M. Arfan; Franco, Oscar H.; Voortman, Trudy (2019). "Dietary antioxidant capacity and risk of type 2 diabetes mellitus, prediabetes and insulin resistance: the Rotterdam Study". European Journal of Epidemiology. 34 (9): 853–861. doi:10.1007/s10654-019-00548-9. ISSN 0393-2990.
  3. Kaneto, H.; Kajimoto, Y.; Miyagawa, J.; Matsuoka, T.; Fujitani, Y.; Umayahara, Y.; Hanafusa, T.; Matsuzawa, Y.; Yamasaki, Y.; Hori, M. (1999). "Beneficial effects of antioxidants in diabetes: possible protection of pancreatic beta-cells against glucose toxicity". Diabetes. 48 (12): 2398–2406. doi:10.2337/diabetes.48.12.2398. ISSN 0012-1797.
  4. 4.0 4.1 Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ; et al. (2003). "Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance". J Clin Invest. 112 (12): 1821–30. doi:10.1172/JCI19451. PMC 296998. PMID 14679177.
  5. 5.0 5.1 5.2 Calle MC, Fernandez ML (2012). "Inflammation and type 2 diabetes". Diabetes Metab. 38 (3): 183–91. doi:10.1016/j.diabet.2011.11.006. PMID 22252015.
  6. Hotamisligil GS, Shargill NS, Spiegelman BM (1993). "Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance". Science. 259 (5091): 87–91. PMID 7678183.
  7. Rolff J, Siva-Jothy MT (2003). "Invertebrate ecological immunology". Science. 301 (5632): 472–5. doi:10.1126/science.1080623. PMID 12881560.
  8. 8.0 8.1 Berg AH, Scherer PE (2005). "Adipose tissue, inflammation, and cardiovascular disease". Circ Res. 96 (9): 939–49. doi:10.1161/01.RES.0000163635.62927.34. PMID 15890981.
  9. Trayhurn P, Wood IS (2004). "Adipokines: inflammation and the pleiotropic role of white adipose tissue". Br J Nutr. 92 (3): 347–55. PMID 15469638.
  10. Lyssenko, Valeriya; Jonsson, Anna; Almgren, Peter; Pulizzi, Nicoló; Isomaa, Bo; Tuomi, Tiinamaija; Berglund, Göran; Altshuler, David; Nilsson, Peter; Groop, Leif (2008). "Clinical Risk Factors, DNA Variants, and the Development of Type 2 Diabetes". New England Journal of Medicine. 359 (21): 2220–2232. doi:10.1056/NEJMoa0801869. ISSN 0028-4793.
  11. Lyssenko, Valeriya; Jonsson, Anna; Almgren, Peter; Pulizzi, Nicoló; Isomaa, Bo; Tuomi, Tiinamaija; Berglund, Göran; Altshuler, David; Nilsson, Peter; Groop, Leif (2008). "Clinical Risk Factors, DNA Variants, and the Development of Type 2 Diabetes". New England Journal of Medicine. 359 (21): 2220–2232. doi:10.1056/NEJMoa0801869. ISSN 0028-4793.
  12. Das SK, Elbein SC (2006). "The Genetic Basis of Type 2 Diabetes". Cellscience. 2 (4): 100–131. doi:10.1901/jaba.2006.2-100. PMC 1526773. PMID 16892160.
  13. Tuomi, T. (2005). "Type 1 and Type 2 Diabetes: What Do They Have in Common?". Diabetes. 54 (Supplement 2): S40–S45. doi:10.2337/diabetes.54.suppl_2.S40. ISSN 0012-1797.
  14. Meigs JB, Dupuis J, Herbert AG, Liu C, Wilson PW, Cupples LA (2005). "The insulin gene variable number tandem repeat and risk of type 2 diabetes in a population-based sample of families and unrelated men and women". J Clin Endocrinol Metab. 90 (2): 1137–43. doi:10.1210/jc.2004-1212. PMID 15562019.
  15. Tuomi, T. (2005). "Type 1 and Type 2 Diabetes: What Do They Have in Common?". Diabetes. 54 (Supplement 2): S40–S45. doi:10.2337/diabetes.54.suppl_2.S40. ISSN 0012-1797.
  16. Younossi, Zobair M.; Golabi, Pegah; de Avila, Leyla; Paik, James Minhui; Srishord, Manirath; Fukui, Natsu; Qiu, Ying; Burns, Leah; Afendy, Arian; Nader, Fatema (2019). "The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: A systematic review and meta-analysis". Journal of Hepatology. 71 (4): 793–801. doi:10.1016/j.jhep.2019.06.021. ISSN 0168-8278.
  17. Jack, L., Jr., Boseman, L. & Vinicor, F. Aging Americans and diabetes. A public health and clinical response. Geriatrics 2004, 59, 14-17.
  18. Lovejoy, J. C. The influence of dietary fat on insulin resistance. Curr Diab Rep 2002, 2,435-440.
  19. Hu, F. B. Sedentary lifestyle and risk of obesity and type 2 diabetes. Lipids 2003, 38,103-108.
  20. Mesinovic J, Zengin A, De Courten B, Ebeling PR, Scott D (2019). "Sarcopenia and type 2 diabetes mellitus: a bidirectional relationship". Diabetes Metab Syndr Obes. 12: 1057–1072. doi:10.2147/DMSO.S186600. PMC 6630094 Check |pmc= value (help). PMID 31372016.
  21. Ge, Xiao-Jun; Du, Yu-Xuan; Zheng, Li-Mei; Wang, Mei; Jiang, Jun-Yao (2020). "Mortality trends of liver cancer among patients with type 2 diabetes at the global and national level". Journal of Diabetes and its Complications. 34 (8): 107612. doi:10.1016/j.jdiacomp.2020.107612. ISSN 1056-8727.
  22. Wu, Yingjie; Zhou, An; Tang, Li; Lei, Yuanyuan; Tang, Bo; Zhang, Linjing (2020). "Bile Acids: Key Regulators and Novel Treatment Targets for Type 2 Diabetes". Journal of Diabetes Research. 2020: 1–11. doi:10.1155/2020/6138438. ISSN 2314-6745.
  23. Macauley M, Percival K, Thelwall PE, Hollingsworth KG, Taylor R (2015). "Altered volume, morphology and composition of the pancreas in type 2 diabetes". PLoS One. 10 (5): e0126825. doi:10.1371/journal.pone.0126825. PMC 4423920. PMID 25950180.
  24. Macauley M, Percival K, Thelwall PE, Hollingsworth KG, Taylor R (2015). "Altered volume, morphology and composition of the pancreas in type 2 diabetes". PLoS One. 10 (5): e0126825. doi:10.1371/journal.pone.0126825. PMC 4423920. PMID 25950180.
  25. Donath, M. Y.; Schumann, D. M.; Faulenbach, M.; Ellingsgaard, H.; Perren, A.; Ehses, J. A. (2008). "Islet Inflammation in Type 2 Diabetes: From metabolic stress to therapy". Diabetes Care. 31 (Supplement 2): S161–S164. doi:10.2337/dc08-s243. ISSN 0149-5992.
  26. Tomova, Irina; Stoyanov, George S; Dzhenkov, Deyan L; Petkova, Lilyana (2020). "Late Pathomorphological Features of the Endocrine Pancreas in Patients With Type 2 Diabetes Mellitus". Cureus. doi:10.7759/cureus.8777. ISSN 2168-8184.


Template:WH Template:WS