Fanconi anemia epidemiology and demographics
Fanconi anemia Microchapters |
Diagnosis |
---|
Treatment |
Case Studies |
Fanconi anemia epidemiology and demographics On the Web |
American Roentgen Ray Society Images of Fanconi anemia epidemiology and demographics |
Risk calculators and risk factors for Fanconi anemia epidemiology and demographics |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1] Associate Editor(s)-in-Chief: Shyam Patel [2] Pervaiz Laghari, MD[3]
Overview
Fanconi anemia is rare overall, but it is one of the most common inherited bone marrow failure syndromes. It is typically diagnosed in children with a median age of diagnosis of 7.6 years. There is no racial predilection for Fanconi anemia. It is slightly more common in males than females with a ratio of 1.2:1.
Epidemiology and Demographics
Fanconi anemia is rare overall, but it is one of the most common inherited bone marrow failure syndromes. Historically, the heterozygote frequency for pathogenic Fanconi anemia mutations has been estimated to be 1:300 in the United States and Europe and 1:100 in Ashkenazi Jews and South Africans. A 2011 study using demographic data from the Fanconi Anemia Research Fund estimated a higher carrier frequency in the United States (within the range of 1:156 to 1:209) and in Israel (within the range of 1:66 to 1:128)[1][2][3]
Incidence
- The incidence of FA is approximately 1 in 100,000 to 250,000 births.
- Approximately 10 to 20 children are born with FA each year in the United States.
Prevalence
- The probability of FA in the US population was estimated to be 1 in 129,600 births.[4]
- SEER data were used to estimate the age-adjusted annual probability of AML, in persons 0–18 years, as 0.72/100,000.
Age
- Patients of all age groups may develop FA.
- The age of onset of bone marrow failure in patients with FA is highly variable, even among siblings.
- Most children are diagnosed between six and nine years of age, concurrent with the onset of bone marrow failure. Rarely, marrow failure from FA can present in infants and small children.
- An analysis of 754 patients in the International Fanconi Anemia Registry (IFAR) suggested that the average age of onset is 7.6 years.[5] However, that study analyzed patients who mainly had defects in the FANCA, FANCC, and FANCG genes, which are the most frequently mutated FA genes; therefore, the results may not be representative of patients with rarer gene defects.
- In adults as compared to children, FA is less commonly diagnosed due to primary bone marrow failure; instead, the diagnosis of FA more commonly occurs as a consequence of presentation with cancer or with severe toxicity after chemotherapy treatment for a malignancy.
- Severe, usually transient, bone marrow failure can also develop in non-transplanted female patients with FA during pregnancy.
Race
- There is no racial predilection to FA. It is found is all races and ethinic group.
- Ethinic groups with higher than average prevalence of FA include Jews, Spanish Gypsies and Black and Afrikaner population from South Africa. These increases prevalence are due to specific founder mutations. Other countried where found founder mutation include Tunisia, Japan, Korea and Brazil.
Gender
- FA slightly more common in males than females with a ratio of 1.2:1 (M:F)
Region
- The FA cases are more prevalent in Middle East parts of the World where tribal and/or local customs with respect to marriage make consanguinity, and thus higher probability of inheriting an autosomal recessive disease more common.
Developed Countries
There is no particular relation of FA with developed countries.
Developing Countries
There is no particular relation of FA with developing countries.
References
- ↑ Castilla-Cortazar I, Aguirre GA, De Ita JR (2018). "About a Suggestive Association Between Fanconi Anemia and Laron Syndrome". Am J Med Sci. 355 (6): 615–616. doi:10.1016/j.amjms.2018.02.004. PMID 29891047.
- ↑ García-de Teresa B, Frias S (2018). "In Reference to Fanconi Anemia and Laron Syndrome". Am J Med Sci. 355 (6): 614–615. doi:10.1016/j.amjms.2018.01.014. PMID 29891046.
- ↑ Douiev L, Saada A (2018). "The pathomechanism of cytochrome c oxidase deficiency includes nuclear DNA damage". Biochim Biophys Acta. doi:10.1016/j.bbabio.2018.06.004. PMID 29886046.
- ↑ Rochowski A, Rosenberg PS, Alonzo TA, Gerbing RB, Lange BJ, Alter BP (2012). "Estimation of the prevalence of Fanconi anemia among patients with de novo acute myelogenous leukemia who have poor recovery from chemotherapy". Leuk Res. 36 (1): 29–31. doi:10.1016/j.leukres.2011.09.009. PMC 4008327. PMID 21974856.
- ↑ Nalepa G, Clapp DW (2014). "Fanconi anemia and the cell cycle: new perspectives on aneuploidy". F1000Prime Rep. 6: 23. doi:10.12703/P6-23. PMC 3974572. PMID 24765528.