This gene encodes the catalytic subunit of glucose 6-phosphatase (G6Pase). G6Pase is located in the endoplasmic reticulum (ER) and catalyzes the hydrolysis of glucose 6-phosphate to glucose and phosphate in the last step of the gluconeogenic and glycogenolytic pathways.[1]
Clinical significance
Mutations in this gene result in autosomal recessive severe congenital neutropenia.[4]
G6PC3 deficiency results in a phenotypic continuum.[5][6] At one end the affected individuals have only neutropenia and related complications but no other organ is affected. This is sometimes referred to as non-syndromic or isolated severe congenital neutropenia.[7] Most affected individuals have a classic form of the disease with severe congenital neutropenia and cardiovascular and/or urogenital abnormalities.[8][9] Some individuals have severe G6PC3 deficiency (also known as Dursun syndrome) and they have all the features of classic G6PC3 deficiency but in addition show involvement of non-myeloid hematopoietic cell lines, some other extra-hematologic features and pulmonary hypertension.[10]
↑Martin CC, Oeser JK, Svitek CA, Hunter SI, Hutton JC, O'Brien RM (October 2002). "Identification and characterization of a human cDNA and gene encoding a ubiquitously expressed glucose-6-phosphatase catalytic subunit-related protein". Journal of Molecular Endocrinology. 29 (2): 205–22. doi:10.1677/jme.0.0290205. PMID12370122.
↑Guionie O, Clottes E, Stafford K, Burchell A (September 2003). "Identification and characterisation of a new human glucose-6-phosphatase isoform". FEBS Letters. 551 (1–3): 159–64. doi:10.1016/S0014-5793(03)00903-7. PMID12965222.
↑Banka S, Wynn R, Byers H, Arkwright PD, Newman WG (February 2013). "G6PC3 mutations cause non-syndromic severe congenital neutropenia". Molecular Genetics and Metabolism. 108 (2): 138–41. doi:10.1016/j.ymgme.2012.12.001. PMID23298686.
↑Boztug K, Rosenberg PS, Dorda M, Banka S, Moulton T, Curtin J, et al. (April 2012). "Extended spectrum of human glucose-6-phosphatase catalytic subunit 3 deficiency: novel genotypes and phenotypic variability in severe congenital neutropenia". The Journal of Pediatrics. 160 (4): 679–683.e2. doi:10.1016/j.jpeds.2011.09.019. PMID22050868.
↑Banka S, Newman WG, Ozgül RK, Dursun A (October 2010). "Mutations in the G6PC3 gene cause Dursun syndrome". American Journal of Medical Genetics. Part A. 152A (10): 2609–11. doi:10.1002/ajmg.a.33615. PMID20799326.