Hypertrophic cardiomyopathy positron emission tomography

Jump to navigation Jump to search

Hypertrophic Cardiomyopathy Microchapters

Home

Patient Information

Overview

Historical Perspective

Classification

Pathophysiology

Causes

Differentiating Hypertrophic Cardiomyopathy from other Diseases

Epidemiology and Demographics

Risk Factors

Screening

Natural History, Complications and Prognosis

Diagnosis

Diagnostic Study of Choice

History and Symptoms

Physical Examination

Laboratory Findings

Electrocardiogram

X Ray

Echocardiography and Ultrasound

CT scan

MRI

Other Imaging Findings

Other Diagnostic Studies

Treatment

Medical Therapy

Interventions

Surgery

Primary Prevention

Secondary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Hypertrophic cardiomyopathy positron emission tomography On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Hypertrophic cardiomyopathy positron emission tomography

CDC on Hypertrophic cardiomyopathy positron emission tomography

Hypertrophic cardiomyopathy positron emission tomography in the news

Blogs on Hypertrophic cardiomyopathy positron emission tomography

Directions to Hospitals Treating Hypertrophic cardiomyopathy

Risk calculators and risk factors for Hypertrophic cardiomyopathy positron emission tomography

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Overview

Positron Emission Tomography (PET) studies have demonstrated that coronary flow reserve is reduced in patients with HCM. Those patients who subsequently died had a greater reduction in coronary flow reserve at baseline. It has been hypothesized that this ischemia may mediate in part the higher risk in sudden cardiac death.

2011 ACCF/AHA Guideline for the Diagnosis and Treatment of Hypertrophic Cardiomyopathy (DO NOT EDIT)[1]

Detection of Concomitant Coronary Disease (DO NOT EDIT)[1]

Class I
"1. Coronary arteriography (invasive or computed tomographic imaging) is indicated in patients with HOCM with chest discomfort who have an intermediate to high likelihood of CAD when the identification of concomitant CAD will change management strategies. (Level of Evidence: C) "
Class IIa
"1. Assessment of ischemia or perfusion abnormalities suggestive of CAD with single photon emission computed tomography (SPECT) or positron emission tomography (PET) myocardial perfusion imaging (MPI; because of excellent negative predictive value) is reasonable in patients with HCM with chest discomfort and a low likelihood of CAD to rule out possible concomitant CAD. (Level of Evidence: C) "
Class III (No Benefit)
"1. Assessment for the presence of blunted flow reserve (microvascular ischemia) using quantitative myocardial blood flow measurements by PET is not indicated for the assessment of prognosis in patients with HCM. (Level of Evidence: C) "
"2. Routine SPECT MPI or stress echocardiography is not indicated for detection of silent CAD-related ischemia in patients with HCM who are asymptomatic. (Level of Evidence: C) "

References

  1. 1.0 1.1 Gersh BJ, Maron BJ, Bonow RO, Dearani JA, Fifer MA, Link MS, Naidu SS, Nishimura RA, Ommen SR, Rakowski H, Seidman CE, Towbin JA, Udelson JE, Yancy CW (2011). "2011 ACCF/AHA Guideline for the Diagnosis and Treatment of Hypertrophic Cardiomyopathy A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines Developed in Collaboration With the American Association for Thoracic Surgery, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons". Journal of the American College of Cardiology. 58 (25): e212–60. doi:10.1016/j.jacc.2011.06.011. PMID 22075469. Retrieved 2011-12-19. Unknown parameter |month= ignored (help)