miR-208

Jump to navigation Jump to search
miR-208
File:Mir-208 SS.png
Conserved secondary structure of miR-208 microRNA precursor
Identifiers
SymbolmiR-208
Alt. SymbolsMIR208
RfamRF00749
miRBaseMI0000251
miRBase familyMIPF0000178
Entrez406990
HUGO31585
OMIM611116
RefSeqNR_029595
Other data
RNA typemiRNA
Domain(s)Metazoa
GO0035195
SO0001244
LocusChr. 14 q11.2
PDB structuresPDBe

miR-208 is a family of microRNA precursors found in animals, including humans. The ~22 nucleotide mature miRNA sequence is excised from the precursor hairpin by the enzyme Dicer.[1] This sequence then associates with RISC which effects RNA interference.[2]

In humans, the gene for miR-208 is located in an intron of MYH7.[3]

Function

miR-208 has been deemed a "myomiR"[3] as it is specifically expressed, or found at much higher levels, in cardiac tissue. Other myomiRs include miR-1 and miR-133.[3] miR-208 is thought to be dysregulated in various cardiovascular diseases.[4][5]

miR-208 functions in cardiomyocytes regulating the production of the myosin heavy chain during development.[3] It also responds to stress and forms part of a hormonal signalling cascade in cardiac cells.[6]

Applications

A preliminary study has shown a potential use in the prognosis of dilated cardiomyopathy.[7] Another application has been suggested as using plasma concentration of miR-208 as a biomarker of damaged cardiac muscle cells.[8]

References

  1. Ambros, V (2001-12-28). "microRNAs: tiny regulators with great potential". Cell. 107 (7): 823–6. doi:10.1016/S0092-8674(01)00616-X. PMID 11779458.
  2. Gregory, RI; Chendrimada, TP; Cooch, N; Shiekhattar, R (2005-11-18). "Human RISC couples microRNA biogenesis and posttranscriptional gene silencing". Cell. 123 (4): 631–40. doi:10.1016/j.cell.2005.10.022. PMID 16271387.
  3. 3.0 3.1 3.2 3.3 Malizia, AP; Wang, DZ (Mar–Apr 2011). "MicroRNAs in cardiomyocyte development". Wiley Interdisciplinary Reviews: Systems Biology and Medicine. 3 (2): 183–90. doi:10.1002/wsbm.111. PMC 3058499. PMID 21305703.
  4. Cai, B; Pan, Z; Lu, Y (2010). "The roles of microRNAs in heart diseases: a novel important regulator". Current Medicinal Chemistry. 17 (5): 407–11. doi:10.2174/092986710790226129. PMID 20015039.(subscription required)
  5. Han, M; Toli, J; Abdellatif, M (May 2011). "MicroRNAs in the cardiovascular system". Current Opinion in Cardiology. 26 (3): 181–9. doi:10.1097/HCO.0b013e328345983d. PMID 21464712.
  6. van Rooij, E; Sutherland, LB; Qi, X; Richardson, JA; Hill, J; Olson, EN (2007-04-27). "Control of stress-dependent cardiac growth and gene expression by a microRNA". Science. 316 (5824): 575–9. doi:10.1126/science.1139089. PMID 17379774.
  7. Satoh, M; Minami, Y; Takahashi, Y; Tabuchi, T; Nakamura, M (May 2010). "Expression of microRNA-208 is associated with adverse clinical outcomes in human dilated cardiomyopathy". Journal of Cardiac Failure. 16 (5): 404–10. doi:10.1016/j.cardfail.2010.01.002. PMID 20447577.
  8. Ji, X; Takahashi, R; Hiura, Y; Hirokawa, G; Fukushima, Y; Iwai, N (Nov 2009). "Plasma miR-208 as a biomarker of myocardial injury". Clinical Chemistry. 55 (11): 1944–9. doi:10.1373/clinchem.2009.125310. PMID 19696117.

Further reading