Stress fracture non surgical therapy

Jump to navigation Jump to search

Stress fracture Microchapters

Home

Overview

Pathophysiology

Causes

Differentiating a Stress Fracture from other Diseases

Epidemiology and Demographics

Risk Factors

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

X Ray

MRI

Other Imaging Findings

Treatment

Non Surgical Therapy

Surgery

Primary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Stress fracture non surgical therapy On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Stress fracture non surgical therapy

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Stress fracture non surgical therapy

CDC on Stress fracture non surgical therapy

Stress fracture non surgical therapy in the news

Blogs on Stress fracture non surgical therapy

Directions to Hospitals Treating Stress fracture

Risk calculators and risk factors for Stress fracture non surgical therapy

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Non Surgical Therapy

If a stress fracture occurs in a weightbearing bone, healing will be delayed or prevented by continuing to put weight on that limb.

Rest is the only way to completely heal a stress fracture. The average time of complete rest from the activity that caused the stress fracture is three weeks. A fracture requires 4 to 8 weeks of recuperation, however, which may include no more than light use of the injured body part, as long as activity does not cause pain. After the recuperative period, another 2 weeks of mild activity without any pain may be recommended before the bone may be safely considered healed and activity may gradually increase.

During this time, it is advised that training errors be identified (for instance, too much, too soon) and avoided in the future. One rule of thumb is to not increase the volume of training by more than 10% from one week to the next.

Rehabilitation usually consists of muscle strength training to help dissipate the excessive forces transmitted to the bones.

Applying ice on the affected area where the stress fracture occurs for three minutes or more is a good way to treat it.

In some cases, an electronic stimulator or bone stimulator may be used. These devices send electrical impulses into the bone to promote healing; recent studies have shown that the bone heals naturally via electromagnetic stimulation.

Electromagnetically stimulating the bone causes the bone to lay out more bone cells that strengthen the bone.

Bracing or casting the limb with a hard plastic boot or air cast may also prove beneficial by taking some stress off the stress fracture. An air cast has pre-inflated cells that put light pressure on the bone, which promotes healing by increasing blood flow to the area and takes away a lot of the pain because of the pressure it applies to the bone. If the stress fracture is severe enough, crutches also help to take all stress off the bone.

References

Template:WH Template:WS