Stress fracture primary prevention

Jump to navigation Jump to search

Stress fracture Microchapters

Home

Overview

Pathophysiology

Causes

Differentiating a Stress Fracture from other Diseases

Epidemiology and Demographics

Risk Factors

Natural History, Complications and Prognosis

Diagnosis

History and Symptoms

Physical Examination

X Ray

MRI

Other Imaging Findings

Treatment

Non Surgical Therapy

Surgery

Primary Prevention

Cost-Effectiveness of Therapy

Future or Investigational Therapies

Case Studies

Case #1

Stress fracture primary prevention On the Web

Most recent articles

Most cited articles

Review articles

CME Programs

Powerpoint slides

Images

American Roentgen Ray Society Images of Stress fracture primary prevention

All Images
X-rays
Echo & Ultrasound
CT Images
MRI

Ongoing Trials at Clinical Trials.gov

US National Guidelines Clearinghouse

NICE Guidance

FDA on Stress fracture primary prevention

CDC on Stress fracture primary prevention

Stress fracture primary prevention in the news

Blogs on Stress fracture primary prevention

Directions to Hospitals Treating Stress fracture

Risk calculators and risk factors for Stress fracture primary prevention

Editor-In-Chief: C. Michael Gibson, M.S., M.D. [1]

Primary Prevention

One method of avoiding stress fractures is by adding more stress to the bones. Although counter-intuitive given that stress fractures are caused by too much stress on the bones, when moderate stress is applied to the bone in a controlled manner, the bone becomes stronger and less susceptible to a stress fracture. An easy way to do this is to follow one widely known rule for runners, which states that mileage should be increased by no more than 10% per week. This allows the bones to adapt to the added stress so they are able to withstand greater amounts of stress in the future.

Strengthening exercises also help build more muscle strength in the legs. Strengthening these muscles will stop them from getting fatigued so quickly, which allows them to absorb the pounding of running for longer periods of time. Key muscles that need to be strengthened with lower leg stress fractures are the calves and the shin muscles.

Depending on a variety of factors including weight, running surface and shoe durability, runners should replace their shoes every 300-700 miles to allow adequate mid-sole cushioning. A change in the choice of running surfaces can also help prevent stress fractures. However, it is also argued that cushioning in shoes actually causes more stress by reducing the body's natural shock absorbing action, increasing the frequency of running injuries.

When performing any exercise that applies more stress to the bones, it may be wise to increase calcium and vitamin D intake, depending on the individual. Also, it is important to monitor foods eaten because nutrition plays a vital role in bone development. Certain individuals are at risk of osteoporosis, and depending on the country in which medical care is being supplied, there may be a screening program in place.

A new study released by Creighton University has shown Calcium and Vitamin D supplementation, even over a short time period, can significantly reduce stress fractures (overuse injuries to the bone) in female military recruits, according to a study reported Sunday, Feb. 11, 2007 at the 53rd annual Orthopaedic Research Society meeting at the San Diego Convention Center.

References

Template:WH Template:WS