Acute liver failure pathophysiology: Difference between revisions
(5 intermediate revisions by 4 users not shown) | |||
Line 3: | Line 3: | ||
{{CMG}} {{AE}} {{ADI}} {{HS}} | {{CMG}} {{AE}} {{ADI}} {{HS}} | ||
==Overview== | ==Overview== | ||
Acute liver failure is a sudden and severe loss of liver function with evidence of [[encephalopathy]] and [[coagulopathy]] with elevated [[prothrombin time (PT)]] and [[INR|(INR)]] in a person without a preexisting liver disease. The | Acute liver failure is a sudden and severe loss of liver function with evidence of [[encephalopathy]] and [[coagulopathy]] with elevated [[prothrombin time (PT)]] and [[INR|(INR)]] in a person without a preexisting [[liver disease]]. The consequences of acute liver failure are due to the loss of its [[metabolic]], secretory and regulatory effects. This results in the accumulation of [[toxic substances]] and causes deleterious effects. The major pathophysiological mechanisms of morbidity and mortality in patients with acute liver failure are [[cerebral edema]], [[hypoperfusion]] to the liver, [[idiosyncratic drug reactions]], depletion of [[glutathione]] and [[viral hepatitis]]. [[Cerebral edema]] in acute liver failure can be due to [[Vasogenic edema|vasogenic]] and [[cytotoxic]] effects. In [[cytotoxic]] type, there is [[Intracellular|intracellula<nowiki/>r]] swelling but [[blood-brain barrier]] is intact. In [[Vasogenic edema|vasogenic type]], the [[blood-brain barrier]] breaks down and plasma and water accumulate in the [[extracellular space]]. The increased [[ammonia]] concentration in liver failure in combination with the [[glutamine]] produced by the [[astrocytes]] causes excess levels of [[glutamine]] with the help of enzyme [[glutamine synthetase]]. The excess [[glutamine]] is [[cytotoxic]] and may influence the osmotic gradient which could result in [[brain edema]]. In acute liver failure, the increased levels of [[nitric oxide]] in the circulation can also disrupt the [[Autoregulation|cerebral autoregulation]]. [[Acetaminophen]] is the leading cause of acute liver failure in the United States. [[Acetaminophen]] causes dose-related [[toxicity]]. [[Toxicity]] is rarely seen at normal therapeutic doses (up to 4 g/day) without underlying [[liver disease]]. [[Viral hepatitis]] is the leading cause of acute liver failure in the developing world. [[Hepatitis A]], [[Hepatitis B|B]], [[Hepatitis D|D]] (associated with B), and [[Hepatitis E|E]] (in [[endemic]] countries) are commonly associated with acute liver failure. | ||
==Pathophysiology== | ==Pathophysiology== | ||
Acute liver failure is a sudden and severe loss of liver function with evidence of [[encephalopathy]] and [[coagulopathy]] with elevated [[prothrombin time (PT)]] and [[INR|(INR)]] in a person without preexisting liver disease. | Acute liver failure is a sudden and severe loss of liver function with evidence of [[encephalopathy]] and [[coagulopathy]] with elevated [[prothrombin time (PT)]] and [[INR|(INR)]] in a person without preexisting [[liver disease]]. | ||
* The effects of [[acute liver failure]] are due to the loss of its [[metabolic]], secretory and regulatory effects. This results in the accumulation of [[toxic]] substances and causes deleterious effects. | * The effects of [[acute liver failure]] are due to the loss of its [[metabolic]], secretory and regulatory effects. This results in the accumulation of [[toxic]] substances and causes deleterious effects. | ||
* The major [[Pathophysiology|pathophysiological]] mechanisms of [[morbidity]] and [[mortality]] in patients with acute liver failure are [[cerebral edema]], [[hypoperfusion]] to the liver, [[idiosyncratic drug reactions]], depletion of [[glutathione]], [[viral hepatitis]]. | * The major [[Pathophysiology|pathophysiological]] mechanisms of [[morbidity]] and [[mortality]] in patients with acute liver failure are [[cerebral edema]], [[hypoperfusion]] to the liver, [[idiosyncratic drug reactions]], depletion of [[glutathione]], and [[viral hepatitis]]. | ||
* [[Cerebral edema]] in acute liver failure can be due to [[Vasogenic edema|vasogenic]] and [[Cytotoxic|cytotoxic effects]]. | * [[Cerebral edema]] in acute liver failure can be due to [[Vasogenic edema|vasogenic]] and [[Cytotoxic|cytotoxic effects]]. | ||
* In [[Cytotoxic|cytotoxic type]], there is [[Intracellular|intracellular swelling]] | * In [[Cytotoxic|cytotoxic type]], there is [[Intracellular|intracellular swelling]] but [[blood-brain barrier]] is intact. | ||
* In [[Vasogenic edema|vasogenic type]], the blood-brain barrier breaks down and plasma and water accumulate in the extracellular space. | * In [[Vasogenic edema|vasogenic type]], the [[blood-brain barrier]] breaks down and plasma and water accumulate in the [[extracellular space]]. | ||
* The increased ammonia concentration in liver failure in combination with the [[glutamine]] produced by the [[astrocytes]] causes excess levels of [[glutamine]] with the help of enzyme [[glutamine synthetase]]. The excess glutamine is cytotoxic and can disturb the osmotic gradient which can result in brain | * The increased [[ammonia]] concentration in liver failure in combination with the [[glutamine]] produced by the [[astrocytes]] causes excess levels of [[glutamine]] with the help of enzyme [[glutamine synthetase]]. The excess [[glutamine]] is [[cytotoxic]] and can disturb the [[osmotic]] gradient which can result in [[brain edema]]. | ||
* In acute liver failure, the increased levels of [[nitric oxide]] in the circulation can also disrupt the cerebral [[autoregulation]]. | * In acute liver failure, the increased levels of [[nitric oxide]] in the circulation can also disrupt the cerebral [[autoregulation]]. | ||
===Specific Conditions=== | ===Specific Conditions=== | ||
====Acetaminophen Toxicity==== | ====Acetaminophen Toxicity==== | ||
* [[Acetaminophen]] is the leading cause of acute liver failure in the United States. | * [[Acetaminophen]] is the leading cause of acute liver failure in the United States. | ||
* [[Acetaminophen]] causes dose-related toxicity. | * [[Acetaminophen]] causes dose-related [[toxicity]]. | ||
* Toxicity is rarely seen at normal therapeutic doses (up to 4 g/day) without underlying liver disease. | * [[Toxicity]] is rarely seen at normal therapeutic doses (up to 4 g/day) without underlying liver disease. | ||
* [[Acetaminophen]] is mainly metabolized (90 %) in the liver and its metabolic end products ([[sulfate]] and [[glucuronide]] conjugates) are then excreted in the urine. | * [[Acetaminophen]] is mainly metabolized (90 %) in the [[liver]] and its metabolic end products ([[sulfate]] and [[glucuronide]] conjugates) are then excreted in the urine. | ||
*Remaining one half unmetabolized [[acetaminophen]] is excreted unchanged in the urine and rest is [[metabolized]] by [[cytochrome P450]] pathway to [[NAPQI|N-acetyl-p-benzoquinoneimine (NAPQI)]]. | *Remaining one half unmetabolized [[acetaminophen]] is excreted unchanged in the urine and rest is [[metabolized]] by [[cytochrome P450]] pathway to [[NAPQI|N-acetyl-p-benzoquinoneimine (NAPQI)]]. | ||
*[[NAPQI | *[[NAPQI]] is [[hepatotoxic]] and converted to nontoxic [[cysteine]] and [[mercaptan]] compounds by [[Glutathione|hepatic glutathione]] which are then excreted in the urine. | ||
*At toxic doses, the [[sulfate]] and [[glucuronide]] conjugation pathway are overwhelmed and led to increased [[acetaminophen]] to be metabolized by [[cytochrome P450]]. | *At [[toxic]] doses, the [[sulfate]] and [[glucuronide]] [[conjugation]] pathway are overwhelmed and led to increased [[acetaminophen]] to be metabolized by [[cytochrome P450]]. | ||
*At toxic doses, the [[glutathione]] stores are depleted and it led to excess unattended [[NAPQI]] which causes [[hepatotoxicity]]. | *At [[toxic]] doses, the [[glutathione]] stores are depleted and it led to excess unattended [[NAPQI]] which causes [[hepatotoxicity]]. | ||
====Other Drugs==== | ====Other Drugs==== | ||
* Drugs other than [[acetaminophen]] also cause acute liver failure. | * Drugs other than [[acetaminophen]] also cause acute liver failure. | ||
* These constitute 13% of cases of acute liver failure in US. <ref name="pmid12484709">{{cite journal |author=Ostapowicz G, Fontana RJ, Schiødt FV, Larson A, Davern TJ, Han SH, McCashland TM, Shakil AO, Hay JE, Hynan L, Crippin JS, Blei AT, Samuel G, Reisch J, Lee WM |title=Results of a prospective study of acute liver failure at 17 tertiary care centers in the United States |journal=[[Annals of Internal Medicine]] |volume=137 |issue=12 |pages=947–54 |year=2002 |month=December |pmid=12484709 |doi= |url=http://www.annals.org/article.aspx?volume=137&page=947 |accessdate=2012-10-27}}</ref> | * These constitute 13% of cases of acute liver failure in US.<ref name="pmid12484709">{{cite journal |author=Ostapowicz G, Fontana RJ, Schiødt FV, Larson A, Davern TJ, Han SH, McCashland TM, Shakil AO, Hay JE, Hynan L, Crippin JS, Blei AT, Samuel G, Reisch J, Lee WM |title=Results of a prospective study of acute liver failure at 17 tertiary care centers in the United States |journal=[[Annals of Internal Medicine]] |volume=137 |issue=12 |pages=947–54 |year=2002 |month=December |pmid=12484709 |doi= |url=http://www.annals.org/article.aspx?volume=137&page=947 |accessdate=2012-10-27}}</ref> | ||
* They cause [[Idiosyncratic drug reaction|idiosyncratic drug hepatotoxicity]]. | * They cause [[Idiosyncratic drug reaction|idiosyncratic drug hepatotoxicity]]. | ||
* They usually present within six months of drug initiation. | * They usually present within six months of drug initiation. | ||
Line 34: | Line 34: | ||
* Patients may recover from traditional medical treatment, or may require [[transplantation]] in more severe cases. | * Patients may recover from traditional medical treatment, or may require [[transplantation]] in more severe cases. | ||
====Viral Hepatitis==== | ====Viral Hepatitis==== | ||
* [[Hepatitis | * [[Hepatitis A]], [[Hepatitis B|B]], [[Hepatitis D|D]] (associated with B), and [[Hepatitis E|E]] (in [[endemic]] countries) can cause acute liver failure in the developing world. | ||
* [[Viral hepatitis]] ( | * [[Viral hepatitis]] ([[Hepatitis A]] and [[Hepatitis B|B]]) constitute to causing 12% of the cases of acute liver failure in US.<ref name="pmid12484709">{{cite journal |author=Ostapowicz G, Fontana RJ, Schiødt FV, Larson A, Davern TJ, Han SH, McCashland TM, Shakil AO, Hay JE, Hynan L, Crippin JS, Blei AT, Samuel G, Reisch J, Lee WM |title=Results of a prospective study of acute liver failure at 17 tertiary care centers in the United States |journal=[[Annals of Internal Medicine]] |volume=137 |issue=12 |pages=947–54 |year=2002 |month=December |pmid=12484709 |doi= |url=http://www.annals.org/article.aspx?volume=137&page=947 |accessdate=2012-10-27}}</ref> | ||
* [[Hepatitis C]] alone doesn't seem to cause [[acute liver failure]].<ref name="pmid12591067">{{cite journal |author=Schiødt FV, Davern TJ, Shakil AO, McGuire B, Samuel G, Lee WM |title=Viral hepatitis-related acute liver failure |journal=[[The American Journal of Gastroenterology]] |volume=98 |issue=2 |pages=448–53 |year=2003 |month=February |pmid=12591067 |doi=10.1111/j.1572-0241.2003.t01-1-07223.x |url=http://dx.doi.org/10.1111/j.1572-0241.2003.t01-1-07223.x |accessdate=2012-10-27}}</ref> | * [[Hepatitis C]] alone doesn't seem to cause [[acute liver failure]].<ref name="pmid12591067">{{cite journal |author=Schiødt FV, Davern TJ, Shakil AO, McGuire B, Samuel G, Lee WM |title=Viral hepatitis-related acute liver failure |journal=[[The American Journal of Gastroenterology]] |volume=98 |issue=2 |pages=448–53 |year=2003 |month=February |pmid=12591067 |doi=10.1111/j.1572-0241.2003.t01-1-07223.x |url=http://dx.doi.org/10.1111/j.1572-0241.2003.t01-1-07223.x |accessdate=2012-10-27}}</ref> | ||
* There is a difference in the survival rate of patients with [[acute liver failure]] in [[hepatitis A]] and [[hepatitis B]] | * There is a difference in the survival rate of patients with [[acute liver failure]] in [[hepatitis A]] and [[hepatitis B]]. This may be an inherent feature of infections and does not depend on the severity of dysfunction.<ref name="pmid12591067">{{cite journal |author=Schiødt FV, Davern TJ, Shakil AO, McGuire B, Samuel G, Lee WM |title=Viral hepatitis-related acute liver failure |journal=[[The American Journal of Gastroenterology]] |volume=98 |issue=2 |pages=448–53 |year=2003 |month=February |pmid=12591067 |doi=10.1111/j.1572-0241.2003.t01-1-07223.x |url=http://dx.doi.org/10.1111/j.1572-0241.2003.t01-1-07223.x |accessdate=2012-10-27}}</ref> | ||
====Autoimmune Hepatitis==== | ====Autoimmune Hepatitis==== | ||
* [[Autoimmune hepatitis]] may be an unrecognized coexistent condition. | * [[Autoimmune hepatitis]] may be an unrecognized coexistent condition. | ||
Line 43: | Line 43: | ||
* A few patients may need [[transplantation]] along with [[steroid]] therapy. | * A few patients may need [[transplantation]] along with [[steroid]] therapy. | ||
====Ischemic Injury==== | ====Ischemic Injury==== | ||
* This condition is called [[shock liver]]. | * This condition is called [[shock liver]]. It is a common occurrence in the ICU with a prevalence of 10%.<ref name="pmid20361374">{{cite journal |author=Fuhrmann V, Jäger B, Zubkova A, Drolz A |title=Hypoxic hepatitis - epidemiology, pathophysiology and clinical management |journal=[[Wiener Klinische Wochenschrift]] |volume=122 |issue=5-6 |pages=129–39 |year=2010 |month=March |pmid=20361374 |doi=10.1007/s00508-010-1357-6 |url=http://dx.doi.org/10.1007/s00508-010-1357-6 |accessdate=2012-10-27}}</ref> | ||
* Shock liver results from severe [[hypotension]] due to any causes such as [[heart failure]] | * Shock liver results from severe [[hypotension]] due to any causes such as [[heart failure]] or vasoconstictive drugs. | ||
* Early recovery frequently occurs, but the long term outcome depends on the underlying cause of the [[ischemia]]. | * Early recovery frequently occurs, but the long term outcome depends on the underlying cause of the [[ischemia]]. | ||
====HELLP Syndrome==== | ====HELLP Syndrome==== | ||
* Some women near the end of their pregnancy may develop rapidly progressive [[liver failure]]. | * Some women near the end of their [[pregnancy]] may develop rapidly progressive [[liver failure]]. | ||
* [[HELLP syndrome]] conisists of the triad of [[hemolysis]], elevated liver enzymes and | * [[HELLP syndrome]] conisists of the triad of [[hemolysis]], elevated [[liver enzymes]] and [[Thrombocytopenia|low platelets]]. | ||
* Most of the patients will improve spontaneously with [[delivery]]. | * Most of the patients will improve spontaneously with [[delivery]]. | ||
* [[Postpartum]] deterioration may require [[liver transplantation]]. | * [[Postpartum]] deterioration may require [[liver transplantation]]. | ||
Line 60: | Line 60: | ||
==Microscopic Pathology== | ==Microscopic Pathology== | ||
On microscopic [[pathology]], characteristic findings of acute liver failure include:<ref>[http://askdrwiki.com/mediawiki/index.php?title=Category:Pathology]</ref> | |||
[[Image:Drug-induced hepat.gif|center| | [[Image:Drug-induced hepat.gif|center|thumb|400px|Drug induced hepatitis <br>Soource:By Nephron (Own work) [CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0) or GFDL (http://www.gnu.org/copyleft/fdl.html)], via Wikimedia Commons]] | ||
{{#ev:youtube|G5G9AnVhqhI}} | {{#ev:youtube|G5G9AnVhqhI}} |
Latest revision as of 17:03, 18 December 2017
Acute liver failure Microchapters |
Diagnosis |
---|
Treatment |
Case Studies |
Acute liver failure pathophysiology On the Web |
American Roentgen Ray Society Images of Acute liver failure pathophysiology |
Risk calculators and risk factors for Acute liver failure pathophysiology |
Editor-In-Chief: C. Michael Gibson, M.S., M.D. [2] Associate Editor(s)-in-Chief: Aditya Govindavarjhulla, M.B.B.S. [3] Husnain Shaukat, M.D [4]
Overview
Acute liver failure is a sudden and severe loss of liver function with evidence of encephalopathy and coagulopathy with elevated prothrombin time (PT) and (INR) in a person without a preexisting liver disease. The consequences of acute liver failure are due to the loss of its metabolic, secretory and regulatory effects. This results in the accumulation of toxic substances and causes deleterious effects. The major pathophysiological mechanisms of morbidity and mortality in patients with acute liver failure are cerebral edema, hypoperfusion to the liver, idiosyncratic drug reactions, depletion of glutathione and viral hepatitis. Cerebral edema in acute liver failure can be due to vasogenic and cytotoxic effects. In cytotoxic type, there is intracellular swelling but blood-brain barrier is intact. In vasogenic type, the blood-brain barrier breaks down and plasma and water accumulate in the extracellular space. The increased ammonia concentration in liver failure in combination with the glutamine produced by the astrocytes causes excess levels of glutamine with the help of enzyme glutamine synthetase. The excess glutamine is cytotoxic and may influence the osmotic gradient which could result in brain edema. In acute liver failure, the increased levels of nitric oxide in the circulation can also disrupt the cerebral autoregulation. Acetaminophen is the leading cause of acute liver failure in the United States. Acetaminophen causes dose-related toxicity. Toxicity is rarely seen at normal therapeutic doses (up to 4 g/day) without underlying liver disease. Viral hepatitis is the leading cause of acute liver failure in the developing world. Hepatitis A, B, D (associated with B), and E (in endemic countries) are commonly associated with acute liver failure.
Pathophysiology
Acute liver failure is a sudden and severe loss of liver function with evidence of encephalopathy and coagulopathy with elevated prothrombin time (PT) and (INR) in a person without preexisting liver disease.
- The effects of acute liver failure are due to the loss of its metabolic, secretory and regulatory effects. This results in the accumulation of toxic substances and causes deleterious effects.
- The major pathophysiological mechanisms of morbidity and mortality in patients with acute liver failure are cerebral edema, hypoperfusion to the liver, idiosyncratic drug reactions, depletion of glutathione, and viral hepatitis.
- Cerebral edema in acute liver failure can be due to vasogenic and cytotoxic effects.
- In cytotoxic type, there is intracellular swelling but blood-brain barrier is intact.
- In vasogenic type, the blood-brain barrier breaks down and plasma and water accumulate in the extracellular space.
- The increased ammonia concentration in liver failure in combination with the glutamine produced by the astrocytes causes excess levels of glutamine with the help of enzyme glutamine synthetase. The excess glutamine is cytotoxic and can disturb the osmotic gradient which can result in brain edema.
- In acute liver failure, the increased levels of nitric oxide in the circulation can also disrupt the cerebral autoregulation.
Specific Conditions
Acetaminophen Toxicity
- Acetaminophen is the leading cause of acute liver failure in the United States.
- Acetaminophen causes dose-related toxicity.
- Toxicity is rarely seen at normal therapeutic doses (up to 4 g/day) without underlying liver disease.
- Acetaminophen is mainly metabolized (90 %) in the liver and its metabolic end products (sulfate and glucuronide conjugates) are then excreted in the urine.
- Remaining one half unmetabolized acetaminophen is excreted unchanged in the urine and rest is metabolized by cytochrome P450 pathway to N-acetyl-p-benzoquinoneimine (NAPQI).
- NAPQI is hepatotoxic and converted to nontoxic cysteine and mercaptan compounds by hepatic glutathione which are then excreted in the urine.
- At toxic doses, the sulfate and glucuronide conjugation pathway are overwhelmed and led to increased acetaminophen to be metabolized by cytochrome P450.
- At toxic doses, the glutathione stores are depleted and it led to excess unattended NAPQI which causes hepatotoxicity.
Other Drugs
- Drugs other than acetaminophen also cause acute liver failure.
- These constitute 13% of cases of acute liver failure in US.[1]
- They cause idiosyncratic drug hepatotoxicity.
- They usually present within six months of drug initiation.
Mushroom Poisoning
- This is mainly caused by the genus Amanita (Amanita phalloides).[2]
- Presentations may vary from case to case and it constitutes a medical emergency.
- Patients may recover from traditional medical treatment, or may require transplantation in more severe cases.
Viral Hepatitis
- Hepatitis A, B, D (associated with B), and E (in endemic countries) can cause acute liver failure in the developing world.
- Viral hepatitis (Hepatitis A and B) constitute to causing 12% of the cases of acute liver failure in US.[1]
- Hepatitis C alone doesn't seem to cause acute liver failure.[3]
- There is a difference in the survival rate of patients with acute liver failure in hepatitis A and hepatitis B. This may be an inherent feature of infections and does not depend on the severity of dysfunction.[3]
Autoimmune Hepatitis
- Autoimmune hepatitis may be an unrecognized coexistent condition.
- Autoantibodies are helpful in the diagnosis of the condition. In cases of a negative test for autoantibodies, biopsy may be required.
- A few patients may need transplantation along with steroid therapy.
Ischemic Injury
- This condition is called shock liver. It is a common occurrence in the ICU with a prevalence of 10%.[4]
- Shock liver results from severe hypotension due to any causes such as heart failure or vasoconstictive drugs.
- Early recovery frequently occurs, but the long term outcome depends on the underlying cause of the ischemia.
HELLP Syndrome
- Some women near the end of their pregnancy may develop rapidly progressive liver failure.
- HELLP syndrome conisists of the triad of hemolysis, elevated liver enzymes and low platelets.
- Most of the patients will improve spontaneously with delivery.
- Postpartum deterioration may require liver transplantation.
Malignancy
- Malignant infiltration may cause acute liver failure.
- Severe acute infiltrations may occur with a few malignancies like breast cancer, small cell lung cancer, lymphoma, melanoma, and myeloma.
- Transplantation is not advised in these patients.[5]
Gross Pathology
On gross pathology, characteristic findings of acute liver failure include:
Microscopic Pathology
On microscopic pathology, characteristic findings of acute liver failure include:[6]
{{#ev:youtube|G5G9AnVhqhI}}
{{#ev:youtube|l4m3f2KCxLM}}
References
- ↑ 1.0 1.1 Ostapowicz G, Fontana RJ, Schiødt FV, Larson A, Davern TJ, Han SH, McCashland TM, Shakil AO, Hay JE, Hynan L, Crippin JS, Blei AT, Samuel G, Reisch J, Lee WM (2002). "Results of a prospective study of acute liver failure at 17 tertiary care centers in the United States". Annals of Internal Medicine. 137 (12): 947–54. PMID 12484709. Retrieved 2012-10-27. Unknown parameter
|month=
ignored (help) - ↑ Catalina MV, Núñez O, Ponferrada A, Menchén L, Matilla A, Clemente G, Bañares R (2003). "[Liver failure due to mushroom poisoning: clinical course and new treatment perspectives]". Gastroenterología Y Hepatología (in Spanish; Castilian). 26 (7): 417–20. PMID 12887855. Retrieved 2012-10-27.
- ↑ 3.0 3.1 Schiødt FV, Davern TJ, Shakil AO, McGuire B, Samuel G, Lee WM (2003). "Viral hepatitis-related acute liver failure". The American Journal of Gastroenterology. 98 (2): 448–53. doi:10.1111/j.1572-0241.2003.t01-1-07223.x. PMID 12591067. Retrieved 2012-10-27. Unknown parameter
|month=
ignored (help) - ↑ Fuhrmann V, Jäger B, Zubkova A, Drolz A (2010). "Hypoxic hepatitis - epidemiology, pathophysiology and clinical management". Wiener Klinische Wochenschrift. 122 (5–6): 129–39. doi:10.1007/s00508-010-1357-6. PMID 20361374. Retrieved 2012-10-27. Unknown parameter
|month=
ignored (help) - ↑ Woolf GM, Petrovic LM, Rojter SE, Villamil FG, Makowka L, Podesta LG, Sher LS, Memsic L, Vierling JM (1994). "Acute liver failure due to lymphoma. A diagnostic concern when considering liver transplantation". Digestive Diseases and Sciences. 39 (6): 1351–8. PMID 8200270. Unknown parameter
|month=
ignored (help);|access-date=
requires|url=
(help) - ↑ [1]